Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Estimating the timing of geophysical commitment to 1.5 and 2.0 °C of global warming


Following abrupt cessation of anthropogenic emissions, decreases in short-lived aerosols would lead to a warming peak within a decade, followed by slow cooling as GHG concentrations decline. This implies a geophysical commitment to temporarily crossing warming levels before reaching them. Here we use an emissions-based climate model (FaIR) to estimate temperature change following cessation of emissions in 2021 and in every year thereafter until 2080 following eight Shared Socioeconomic Pathways (SSPs). Assuming a medium-emissions trajectory (SSP2–4.5), we find that we are already committed to peak warming greater than 1.5 °C with 42% probability, increasing to 66% by 2029 (340 GtCO2 relative to 2021). Probability of peak warming greater than 2.0 °C is currently 2%, increasing to 66% by 2057 (1,550 GtCO2 relative to 2021). Because climate will cool from peak warming as GHG concentrations decline, committed warming of 1.5 °C in 2100 will not occur with at least 66% probability until 2055.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Constrained FaIR ensemble global temperature projections.
Fig. 2: Committed warming and scenario warming following SSP2–4.5.
Fig. 3: Committed warming and scenario warming relative to 1850–1900 for all SSPs.

Data availability

All data necessary to interpret, verify and extend the research in this article are available to download from the online repository Zenodo48.

Code availability

The FaIR model is available to download from the public code repository GitHub ( All other code used to used to set up model simulations, analyse model output and create figures are available to view and download from GitHub49.


  1. Lee, J.-Y. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 4 (IPCC, Cambridge Univ. Press, 2021).

  2. Solomon, S., Plattner, G.-K., Knutti, R. & Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl Acad. Sci. USA 106, 1704–1709 (2009).

    CAS  Article  Google Scholar 

  3. Armour, K. C. & Roe, G. H. Climate commitment in an uncertain world. Geophys. Res. Lett. (2011).

  4. Ehlert, D. & Zickfeld, K. What determines the warming commitment after cessation of CO2 emissions? Environ. Res. Lett. 12, 015002 (2017).

    Article  Google Scholar 

  5. Goodwin, P., Williams, R. G. & Ridgwell, A. Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake. Nat. Geosci. 8, 29–34 (2015).

    CAS  Article  Google Scholar 

  6. Williams, R. G., Roussenov, V., Frölicher, T. L. & Goodwin, P. Drivers of continued surface warming after cessation of carbon emissions. Geophys. Res. Lett. 44, 10633–10642 (2017).

    Google Scholar 

  7. Frölicher, T. L., Winton, M. & Sarmiento, J. L. Continued global warming after CO2 emissions stoppage. Nat. Clim. Change 4, 40–44 (2014).

    Article  Google Scholar 

  8. MacDougall, A. H. et al. Is there warming in the pipeline? A multi-model analysis of the zero emissions commitment from CO2. Biogeosciences 17, 2987–3016 (2020).

    Article  Google Scholar 

  9. Winton, M., Takahashi, K. & Held, I. M. Importance of ocean heat uptake efficacy to transient climate change. J. Clim. 23, 2333–2344 (2010).

    Article  Google Scholar 

  10. Zhou, C., Zelinka, M. D., Dessler, A. E. & Wang, M. Greater committed warming after accounting for the pattern effect. Nat. Clim. Change 11, 132–136 (2021).

    Article  Google Scholar 

  11. Hare, B. & Meinshausen, M. How much warming are we committed to and how much can be avoided? Climatic Change 75, 111–149 (2006).

    CAS  Article  Google Scholar 

  12. Mauritsen, T. & Pincus, R. Committed warming inferred from observations. Nat. Clim. Change 7, 652–655 (2017).

    CAS  Article  Google Scholar 

  13. Smith, C. J. et al. Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming. Nat. Commun. 10, 101 (2019).

    Article  Google Scholar 

  14. Allen, M. et al. Technical Summary. In Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (IPCC, WMO, 2018).

  15. Matthews, H. & Zickfeld, K. Climate response to zeroed emissions of greenhouse gases and aerosols. Nat. Clim. Change 2, 338–341 (2012).

    CAS  Article  Google Scholar 

  16. Chen, D. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 1 (IPCC, Cambridge Univ. Press, 2021).

  17. von Schuckmann, K. et al. Heat stored in the Earth system: where does the energy go? Earth Syst. Sci. Data 12, 2013–2041 (2020).

    Article  Google Scholar 

  18. Forster, P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 7 (IPCC, Cambridge Univ. Press, 2021).

  19. Bellouin, N. et al. Bounding global aerosol radiative forcing of climate change. Rev. Geophys. 58, e2019RG000660 (2020).

    CAS  Article  Google Scholar 

  20. Sherwood, S. C. et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys. 58, e2019RG000678 (2020).

    CAS  Article  Google Scholar 

  21. Smith, C. J. et al. FAIR v1.3: a simple emissions-based impulse response and carbon cycle model. Geosci. Model Dev. 11, 2273–2297 (2018).

    CAS  Article  Google Scholar 

  22. Millar, R. J., Nicholls, Z. R., Friedlingstein, P. & Allen, M. R. A modified impulse–response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions. Atmos. Chem. Phys. 17, 7213–7228 (2017).

    CAS  Article  Google Scholar 

  23. Jones, C. D., Frolicher, T. M. & Koven, C. The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions. Geosci. Model Dev. 12, 4375–4385 (2019).

    Article  Google Scholar 

  24. Held, I. M. et al. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Clim. 23, 2418–2427 (2010).

    Article  Google Scholar 

  25. Geoffroy, O. et al. Transient climate response in a two-layer energy-balance model. Part I: analytical solution and parameter calibration using CMIP5 AOGCM experiments. J. Clim. 26, 1841–1857 (2013).

    Article  Google Scholar 

  26. Smith, C. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 7 Supplementary Material (IPCC, Cambridge Univ. Press, 2021).

  27. Riahi, K., van Vuuren, D. P. & Kriegler, E. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Google Scholar 

  28. Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

    CAS  Article  Google Scholar 

  29. Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).

    CAS  Article  Google Scholar 

  30. MacDougall, A. H. & Friedlingstein, P. The origin and limits of the near proportionality between climate warming and cumulative CO2 emissions. J. Clim. 28, 4217–4230 (2015).

    Article  Google Scholar 

  31. Matthews, H. D. et al. Opportunities and challenges in using remaining carbon budgets to guide climate policy. Nat. Geosci. 13, 769–779 (2020).

    CAS  Article  Google Scholar 

  32. Canadell, J. G. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 5 (IPCC, Cambridge Univ. Press, 2021).

  33. Rogelj, J., Forster, P. M., Kriegler, E., Smith, C. J. & Séférian, R. Estimating and tracking the remaining carbon budget for stringent climate targets. Nature 571, 335–342 (2019).

    CAS  Article  Google Scholar 

  34. Goosse, H. et al. Quantifying climate feedbacks in polar regions. Nat. Commun. 9, 1919 (2018).

    Article  Google Scholar 

  35. MacDougall, A. H. Estimated effect of the permafrost carbon feedback on the zero emissions commitment to climate change. Biogeosciences 18, 4937–4952 (2021).

    CAS  Article  Google Scholar 

  36. Ruppel, C. D. & Kessler, J. D. The interaction of climate change and methane hydrates. Rev. Geophys. 55, 126–168 (2017).

    Article  Google Scholar 

  37. Andrews, T. et al. Accounting for changing temperature patterns increases historical estimates of climate sensitivity. Geophys. Res. Lett. 45, 8490–8499 (2018).

    Article  Google Scholar 

  38. Silvers, L. G., Paynter, D. & Zhao, M. The diversity of cloud responses to twentieth century sea surface temperatures. Geophys. Res. Lett. 45, 391–400 (2018).

    Article  Google Scholar 

  39. Zhou, C., Zelinka, M. D. & Klein, S. A. Impact of decadal cloud variations on the Earth’s energy budget. Nat. Geosci. 9, 871–874 (2016).

    CAS  Article  Google Scholar 

  40. Zhou, C., Zelinka, M. D. & Klein, S. A. Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green’s function approach. J. Adv. Model. Earth Syst. 9, 2174–2189 (2017).

    Article  Google Scholar 

  41. Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. Atmos. (2012).

  42. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213 (2011).

    CAS  Article  Google Scholar 

  43. Andrews, T., Gregory, J. M. & Webb, M. J. The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. J. Clim. 28, 1630–1648 (2015).

    Article  Google Scholar 

  44. Dong, Y., Proistosescu, C., Armour, K. C. & Battisti, D. S. Attributing historical and future evolution of radiative feedbacks to regional warming patterns using a Green’s function approach: the preeminence of the western Pacific. J. Clim. 32, 5471–5491 (2019).

    Article  Google Scholar 

  45. Dong, Y. et al. Intermodel spread in the pattern effect and its contribution to climate sensitivity in CMIP5 and CMIP6 models. J. Clim. 33, 7755–7775 (2020).

    Article  Google Scholar 

  46. Armour, K. C. Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks. Nat. Clim. Change 7, 331–335 (2017).

    Article  Google Scholar 

  47. Trends in Atmospheric Carbon Dioxide: Mauna Loa CO2 Annual Mean Data (NOAA, 2020);

  48. Dvorak, M. Data for ‘Estimating the timing of geophysical commitment to 1.5 and 2.0 °C’. Zenodo (2022).

  49. Dvorak, M. michelledvorak/climate: Methods for ‘Estimating the timing of geophysical commitment to 1.5 and 2.0 °C’ (Version v1). Zenodo (2022).

Download references


The authors acknowledge funding from the following sources: National Science Foundation Grant AGS-1752796 (M.T.D., K.C.A.), Alfred P. Sloan Research Fellowship FG-2020-13568 (K.C.A.), NOAA Grant UWSC12184 (C.P.), NERC/IIASA Collaborative Research Fellowship NE/T009381/1 (C.J.S.) and NSF grant AGS-1665247 (D.M.W.F.).

Author information

Authors and Affiliations



M.T.D., K.C.A. and C.P. designed the study. M.T.D. performed the analysis. K.C.A., C.P., D.M.W.F., M.B.B. and C.J.S. made suggestions to the analysis and helped interpret the results. M.T.D. wrote the manuscript with edits from all other authors.

Corresponding author

Correspondence to M. T. Dvorak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Chris Jones, Andrew MacDougall and Alexander MacIsaac for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Prior and posterior distributions of climate response metrics.

Posterior estimates of ECS (a) and TCR (b) are 2.9C [1.8-4.7C, 90% confidence] and 1.7C [1.2-2.5C], respectively.

Extended Data Fig. 2 Prior and posterior distributions of Held two-layer model variables.

The global radiative feedback parameter, λ (a), ocean heat exchange coefficient, γ (b), and deep ocean efficacy factor, ε (e). Note that neither γ nor ε are well constrained by the observational record. See Supplementary Figure S3 for a sensitivity test of the effect of uncertainty in these variables on results.

Extended Data Fig. 3 Prior and posterior distributions of radiative forcing for main GHGs and aerosols, with the 5th, 50th and 95th percentiles indicated.

CO2 (a), CH4 (b), N2O (c), and aerosol (d) forcing in 2018 relative to 1765. Total ERF (e) is the 2006-2019 mean relative to the 1850-1900 average. Note that the posterior median total ERF of 2.1 Wm−2 corresponds well with the observational value of 2.2 W m−2, σ = 0.43 W m−2. Median aerosol forcing agrees well with the AR6 estimate of -1.1 W m−2 [-2.0 to -0.4 W m−2] for the same period.

Extended Data Fig. 4 Prior and posterior distributions of carbon cycling parameters.

R0 (a) represents the airborne fraction of CO2 during the preindustrial, and rt (b) and rc (c) capture the decreasing absorption efficacy of land and ocean carbon sinks with rising global temperatures and CO2 concentrations, respectively. Note that rc and rt are not well-constrained by the observational record. The posterior mean r0 is 33.8 years, which is between that of Millar et al.’s (2017) value of 32.4 years, and Smith et al.’s (2018) value of 35 years.

Extended Data Fig. 5 Observational constraint results in a closer reproduction of the historical temperature record from 1850-2020 relative to 1850-1900.

Prior (300,000 member) (a) and posterior (6,729) (b) modeled global temperatures. The observed temperature (overlaid in black) is the ensemble mean from the HadCRUT5 blended air and sea surface temperature dataset (49). Shading represents the 90% confidence interval.

Extended Data Fig. 6 Modeled radiative forcing for the period 2000-2100 relative to 1765 for each SSP scenario.

CO2 (a), Aerosol (b), and total (c) radiative forcing. Shading represents the 90% confidence interval.

Extended Data Fig. 7 Abrupt emissions cessation results in less warming relative to linear phase-out scenarios.

Modeled global temperature anomaly relative to 1850-1900 (a) and total radiative forcing relative to 1765 (b) for a phase-out of anthropogenic emissions as compared to the abrupt cessation shown in the main paper (‘abrupt’) following SSP2-4.5. Legend indicates the number of years over which the phase-out occurred, beginning in 2021, where emissions of all gases decrease linearly to zero (GHGs) and to 1765 levels (all other gases), with no net-negative CO2 emissions.

Supplementary information

Supplementary Information

Description of contents, Figs. 1–8 and Tables 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dvorak, M.T., Armour, K.C., Frierson, D.M.W. et al. Estimating the timing of geophysical commitment to 1.5 and 2.0 °C of global warming. Nat. Clim. Chang. 12, 547–552 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing