Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Different climate response persistence causes warming trend unevenness at continental scales

Abstract

Global warming exhibits distinct differences at continental scales, yet whether models capture these differences is unclear. Here, we show that Coupled Model Intercomparison Project Phase 6 climate models underestimate warming unevenness for China and the United States, possibly leading to a biased estimation of anthropogenic influence on warming over the two regions. Observational records suggest that the surface air temperature warming trends over China are 1.53 ± 0.10 and 1.38 ± 0.12 times those of the United States for 1900–2017 and 1951–2017, respectively. We find that surface air temperature changes over China seem more sensitive to external forcing owing to stronger long-range persistence, leading to substantially different warming trends between China and the United States. Our study provides insight into the drivers of contemporary climate warming that could help in devising climate change adaptation and mitigation strategies for the future.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Distribution of the SAT warming trends and the differences.
Fig. 2: Separation of the continental SAT series and comparison of the trends between observations and the CMIP6 large ensemble models.
Fig. 3: Comparison of anomalies computed from observations, the 52 CMIP6 models and the multimodel ensemble.
Fig. 4: Comparison of the persistence of climate response over China and the United States.

Data availability

All supporting data77 used to create figures are available through the Figshare repository at https://doi.org/10.6084/m9.figshare.19127261.v3. C-LSAT2.0 can be downloaded from the PANGAEA repository (https://doi.pangaea.de/10.1594/PANGAEA.919574)78 and from http://www.gwpu.net/h-col-103.html. Other benchmark global SAT datasets, such as CRUTEM5.0, GHCN, GISTEMP and BE, can be downloaded from KNMI’s Climate Explorer website (http://climexp.knmi.nl/selectfield_obs2.cgi?id=someone@somewhere). C-LSAT HR can be accessed from the corresponding author upon request. The reconstruction data of the regional SAT changes at continental scales are from the PAGES 2k Programme and are available at the NOAA NCEI website (https://www.ncei.noaa.gov/). The basemap data used to create figures were downloaded at http://www.naturalearthdata.com/downloads/. Source data are provided with this paper.

Code availability

All codes77 used to set up model simulations, analyse data and/or create figures are available through the Figshare repository at https://doi.org/10.6084/m9.figshare.19127261.v3.

References

  1. Qian, G. et al. A novel statistical decomposition of the historical change in global mean surface temperature. Environ. Res. Lett. 16, 054057 (2021).

    CAS  Google Scholar 

  2. Hasselmann, K. Optimal fingerprints for the detection of time-dependent climate change. J. Clim. 6, 1957–1971 (1993).

    Google Scholar 

  3. Lean, J. L. & Rind, D. H. How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett. 35, L18701 (2008).

    Google Scholar 

  4. DelSole, T., Tippett, M. K. & Shukla, J. A significant component of unforced multidecadal variability in the recent acceleration of global warming. J. Clim. 24, 909–926 (2011).

    Google Scholar 

  5. Stott, P. A. & Tett, S. F. B. Scale-dependent detection of climate change. J. Clim. 11, 3282–3294 (1998).

    Google Scholar 

  6. Li, Q. et al. Consistency of global warming trends strengthened since 1880s. Sci. Bull. 65, 1709–1712 (2020).

    CAS  Google Scholar 

  7. Tett, S. F. B., Stott, P. A., Allen, M. R., Ingram, W. J. & Mitchell, J. F. B. Causes of twentieth-century temperature change near the Earth’s surface. Nature 399, 569–572 (1999).

    CAS  Google Scholar 

  8. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  9. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  10. Zhang, X., Zwiers, F. W. & Stott, P. A. Multimodel multisignal climate change detection at regional scale. J. Clim. 19, 4294–4307 (2006).

    Google Scholar 

  11. de Abreu, R. C., Tett, S. F. B., Schurer, A. & Rocha, H. R. Attribution of detected temperature trends in southeast Brazil. Geophys. Res. Lett. 46, 8407–8414 (2019).

    Google Scholar 

  12. Wan, H., Zhang, X. & Zwiers, F. Human influence on Canadian temperatures. Clim. Dyn. 52, 479–494 (2019).

    Google Scholar 

  13. Wang, S. & Gong, D. Enhancement of the warming trend in China. Geophys. Res. Lett. 27, 2581–2584 (2000).

    CAS  Google Scholar 

  14. Li, Q., Dong, W. & Jones, P. Continental scale surface air temperature variations: experience derived from the Chinese region. Earth Sci. Rev. 200, 102998 (2020).

    Google Scholar 

  15. Hansen, J. et al. A closer look at United States and global surface temperature change. J. Geophys. Res. Atmos. 106, 23947–23963 (2001).

    Google Scholar 

  16. Menne, M. J., Williams, C. N. Jr & Palecki, M. A. On the reliability of the U.S. surface temperature record. J. Geophys. Res. Atmos. 115, D11108 (2010).

    Google Scholar 

  17. Li, Q. et al. Assessment of the uncertainties in temperature change in China during the last century. Chin. Sci. Bull. 55, 1974–1982 (2010).

    Google Scholar 

  18. Li, Q. et al. Comparisons of time series of annual mean surface air temperature for China since the 1900s: observations, model simulations, and extended reanalysis. Bull. Am. Meteorol. Soc. 98, 699–711 (2017).

    Google Scholar 

  19. Seligsohn, D. et al. China, the United States, and the Climate Change Challenge (World Resources Institute, 2009).

  20. Wei, T. et al. Developed and developing world responsibilities for historical climate change and CO2 mitigation. Proc. Natl Acad. Sci. USA 109, 12911–12915 (2012).

    CAS  Google Scholar 

  21. Den Elzen, M. & Schaeffer, M. Responsibility for past and future global warming: uncertainties in attributing anthropogenic climate change. Clim. Change 54, 29–73 (2002).

    Google Scholar 

  22. Li, Q. et al. An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST. Clim. Dyn. 56, 635–650 (2021).

    Google Scholar 

  23. Sun, Y., Zhang, X., Ren, G., Zwiers, F. W. & Hu, T. Contribution of urbanization to warming in China. Nat. Clim. Change 6, 706–709 (2016).

    Google Scholar 

  24. Shen, P. & Zhao, S. 1/4 to 1/3 of observed warming trends in China from 1980 to 2015 are attributed to land use changes. Clim. Change 164, 59 (2021).

    Google Scholar 

  25. Wang, F., Ge, Q., Wang, S., Li, Q. & Jones, P. D. A new estimation of urbanization’s contribution to the warming trend in China. J. Clim. 28, 8923–8938 (2015).

    Google Scholar 

  26. Li, Q., Zhang, H., Liu, X. & Huang, J. Urban heat island effect on annual mean temperature during the last 50 years in China. Theor. Appl. Climatol. 79, 165–174 (2004).

    Google Scholar 

  27. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Google Scholar 

  28. Raghuraman, S. P., Paynter, D. & Ramaswamy, V. Anthropogenic forcing and response yield observed positive trend in Earth’s energy imbalance. Nat. Commun. 12, 4577 (2021).

    CAS  Google Scholar 

  29. Hasselmann, K. Stochastic climate models Part I. Theory. Tellus 28, 473–485 (1976).

    Google Scholar 

  30. Li, Q. Statistical modeling experiment of land precipitation variations since the start of the 20th century with external forcing factors. Chin. Sci. Bull. 65, 2266–2278 (2020).

    Google Scholar 

  31. Deser, C., Hurrell, J. W. & Phillips, A. S. The role of the North Atlantic Oscillation in European climate projections. Clim. Dyn. 49, 3141–3157 (2017).

    Google Scholar 

  32. Frankcombe, L. M., England, M. H., Mann, M. E. & Steinman, B. A. Separating internal variability from the externally forced climate response. J. Clim. 28, 8184–8202 (2015).

    Google Scholar 

  33. Dai, A., Fyfe, J. C., Xie, S.-P. & Dai, X. Decadal modulation of global surface temperature by internal climate variability. Nat. Clim. Change 5, 555–559 (2015).

    Google Scholar 

  34. Wei, M. et al. Quantifying the importance of interannual, interdecadal and multidecadal climate natural variabilities in the modulation of global warming rates. Clim. Dyn. 53, 6715–6727 (2019).

    Google Scholar 

  35. Wu, T., Hu, A., Gao, F., Zhang, J. & Meehl, G. A. New insights into natural variability and anthropogenic forcing of global/regional climate evolution. npj Clim. Atmos. Sci. 2, 18 (2019).

    Google Scholar 

  36. Huang, N. E. & Wu, Z. A review on Hilbert-Huang transform: method and its applications to geophysical studies. Rev. Geophys. 46, RG2006 (2008).

    Google Scholar 

  37. Huang, N. E. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454, 903–995 (1998).

    Google Scholar 

  38. Wu, Z., Huang, N. E., Wallace, J. M., Smoliak, B. V. & Chen, X. On the time-varying trend in global-mean surface temperature. Clim. Dyn. 37, 759–773 (2011).

    Google Scholar 

  39. Mann, M. E., Steinman, B. A. & Miller, S. K. On forced temperature changes, internal variability, and the AMO. Geophys. Res. Lett. 41, 3211–3219 (2014).

    Google Scholar 

  40. Sutton, R. T. & Hodson, D. L. R. Atlantic Ocean forcing of North American and European summer climate. Science 309, 115–118 (2005).

    CAS  Google Scholar 

  41. Folland, C. K., Palmer, T. N. & Parker, D. E. Sahel rainfall and worldwide sea temperatures, 1901–85. Nature 320, 602–607 (1986).

    Google Scholar 

  42. Schlesinger, M. E. & Ramankutty, N. An oscillation in the global climate system of period 65–70 years. Nature 367, 723–726 (1994).

    Google Scholar 

  43. Delworth, T. L. & Mann, M. E. Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dyn. 16, 661–676 (2000).

    Google Scholar 

  44. Mann, M. E., Steinman, B. A., Brouillette, D. J. & Miller, S. K. Multidecadal climate oscillations during the past millennium driven by volcanic forcing. Science 371, 1014–1019 (2021).

    CAS  Google Scholar 

  45. Yuan, N., Fu, Z. & Liu, S. Long-term memory in climate variability: a new look based on fractional integral techniques. J. Geophys. Res. Atmos. 118, 962–969 (2013).

    Google Scholar 

  46. Papalexiou, S. M., Rajulapati, C. R., Clark, M. P. & Lehner, F. Robustness of CMIP6 historical global mean temperature simulations: trends, long-term persistence, autocorrelation, and distributional shape. Earths Future 8, e2020EF001667 (2020).

    Google Scholar 

  47. Huang, J. & Li, Q. Statistical Analysis Methods for Meteorological Data Analysis (in Chinese, China Meteorological Press, 2015).

  48. Zhao, P. et al. Trend of surface air temperature in eastern China and associated large-scale climate variability over the last 100 years. J. Clim. 27, 4693–4703 (2014).

    Google Scholar 

  49. Persad, G. G. & Caldeira, K. Divergent global-scale temperature effects from identical aerosols emitted in different regions. Nat. Commun. 9, 3289 (2018).

    Google Scholar 

  50. Persad, G. G., Ming, Y., Shen, Z. & Ramaswamy, V. Spatially similar surface energy flux perturbations due to greenhouse gases and aerosols. Nat. Commun. 9, 3247 (2018).

    Google Scholar 

  51. Shen, Z., Ming, Y. & Held, I. M. Using the fast impact of anthropogenic aerosols on regional land temperature to constrain aerosol forcing. Sci. Adv. 6, eabb5297 (2020).

    Google Scholar 

  52. Xie, S.-P., Lu, B. & Xiang, B. Similar spatial patterns of climate responses to aerosol and greenhouse gas changes. Nat. Geosci. 6, 828–832 (2013).

    CAS  Google Scholar 

  53. Eyring, V. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte V. et al.) Ch. 3 (IPCC, Cambridge Univ. Press, in the press).

  54. Li, Q. et al. China experiencing the recent warming hiatus. Geophys. Res. Lett. 42, 889–898 (2015).

    Google Scholar 

  55. Greenhouse Gas Bulletin of China in 2019 (Climate Change Center, China Meteorological Administration, accessed 2 August 2021); https://yhp-website.oss-cn-beijing.aliyuncs.com/upload/2019%E4%B8%AD%E5%9B%BD%E6%B8%A9%E5%AE%A4%E6%B0%94%E4%BD%93%E5%85%AC%E6%8A%A5_1634010133088.pdf

  56. Shi, F., Yang, B. & Von Gunten, L. Preliminary multiproxy surface air temperature field reconstruction for China over the past millennium. Sci. China Earth Sci. 55, 2058–2067 (2012).

    Google Scholar 

  57. Trouet, V. et al. A 1500-year reconstruction of annual mean temperature for temperate North America on decadal-to-multidecadal time scales. Environ. Res. Lett. 8, 024008 (2013).

    Google Scholar 

  58. Xu, W. et al. A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900. Clim. Dyn. 50, 2513–2536 (2018).

    Google Scholar 

  59. Cheng, J. et al. Development of high resolution and homogenized gridded land surface air temperature data: a case study over Pan-East Asia. Front. Environ. Sci. 8, 588570 (2020).

    Google Scholar 

  60. Sun, W. et al. The assessment of global surface temperature change from 1850s: the C-LSAT2.0 ensemble and the CMST-Interim datasets. Adv. Atmos. Sci. 38, 875–888 (2021).

    Google Scholar 

  61. Osborn, T. J. et al. Land surface air temperature variations across the globe updated to 2019: the CRUTEM5 data set. J. Geophys. Res. Atmos. 126, e2019JD032352 (2021).

    Google Scholar 

  62. Menne, M. J., Williams, C. N., Gleason, B. E., Rennie, J. J. & Lawrimore, J. H. The global historical climatology network monthly temperature dataset, version 4. J. Clim. 31, 9835–9854 (2018).

    Google Scholar 

  63. Lenssen, N. J. L. et al. Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos. 124, 6307–6326 (2019).

    Google Scholar 

  64. Rohde, R. A. & Hausfather, Z. The Berkeley Earth land/ocean temperature record. Earth Syst. Sci. Data 12, 3469–3479 (2020).

    Google Scholar 

  65. Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2013).

  66. Andrews, T., Gregory, J. M., Webb, M. J. & Taylor, K. E. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys. Res. Lett. 39, L09712 (2012).

    Google Scholar 

  67. Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. & Jones, P. D. Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J. Geophys. Res. Atmos. 111, D12106 (2006).

    Google Scholar 

  68. Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

    Google Scholar 

  69. Wang, J. et al. A new estimate of the China temperature anomaly series and uncertainty assessment in 1900–2006. J. Geophys. Res. Atmos. 119, 1–9 (2014).

    CAS  Google Scholar 

  70. Jones, P. The reliability of global and hemispheric surface temperature records. Adv. Atmos. Sci. 33, 269–282 (2016).

    Google Scholar 

  71. Cowtan, K. et al. Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures. Geophys. Res. Lett. 42, 6526–6534 (2015).

    Google Scholar 

  72. Wang, S. W., Ye, J. L. & Gong, D. Y. Construction of mean annual temperature series for the last one hundred years in China (in Chinese). Q. J. Appl. Meteorol. Sci. 9, 392–401 (1998).

    Google Scholar 

  73. Yun, X. et al. A new merge of global surface temperature datasets since the start of the 20th century. Earth Syst. Sci. Data 11, 1629–1643 (2019).

    Google Scholar 

  74. Ahmed, M. et al. Continental-scale temperature variability during the past two millennia. Nat. Geosci. 6, 339–346 (2013).

    CAS  Google Scholar 

  75. Thei, H. Least Squares and the Standard Linear Model: Principles of Econometrics 101–162 (Wiley, 1971).

  76. Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).

    CAS  Google Scholar 

  77. Li, Q. Observational, Modeling, & Climate Response Persistence at Continental Scales (Figshare, 2022); https://doi.org/10.6084/m9.figshare.19127261.v3

  78. Li, Q., Sun, W. & Cheng, J. China Global Land Surface Air Temperature, Version 2.0 (PANGAEA, 2020); https://doi.org/10.1594/PANGAEA.919574

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of China (grant no. 41975105, to Q.L.) and the National Key R&D Programs of China (grant nos. 2018YFC1507705 and 2017YFC1502301, to Q.L.).

Author information

Authors and Affiliations

Authors

Contributions

Q.L. and W.D. designed the research; Q.L., B.S. and J.H. performed the analysis with input from C.L., L.C., W.S., Y.Y., B.J., Z.G., L.L., X.L., C.S. and W.L.; Q.L., B.H., W.D., P.J., Z.S. and C.L. drafted the manuscript, and all authors participated in editing the manuscript.

Corresponding author

Correspondence to Qingxiang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–6 and Figs. 1–7.

Supplementary Data 1

Data for Supplementary Fig. 1.

Supplementary Data 2

Data for Supplementary Fig. 2.

Supplementary Data 3

Data for Supplementary Fig. 3.

Supplementary Data 4

Data for Supplementary Fig. 4.

Supplementary Data 5

Data for Supplementary Fig. 5.

Supplementary Data 6

Data for Supplementary Fig. 6.

Supplementary Data 7

Data for Supplementary Fig. 7.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Sheng, B., Huang, J. et al. Different climate response persistence causes warming trend unevenness at continental scales. Nat. Clim. Chang. 12, 343–349 (2022). https://doi.org/10.1038/s41558-022-01313-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-022-01313-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing