Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Upper environmental pCO2 drives sensitivity to ocean acidification in marine invertebrates

Abstract

Minimizing the impact of ocean acidification requires an understanding of species responses and environmental variability of population habitats. Whereas the literature is growing rapidly, emerging results suggest unresolved species- or population-specific responses. Here we present a meta-analysis synthesizing experimental studies examining the effects of pCO2 on biological traits in marine invertebrates. At the sampling locations of experimental animals, we determined environmental pCO2 conditions by integrating data from global databases and pCO2 measurements from buoys. Experimental pCO2 scenarios were compared with upper pCO2 using an index considering the upper environmental pCO2. For most taxa, a statistically significant negative linear relationship was observed between this index and mean biological responses, indicating that the impact of a given experimental pCO2 scenario depends on the deviation from the upper pCO2 level experienced by local populations. Our results highlight the importance of local biological adaptation and the need to consider present pCO2 natural variability while interpreting experimental results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of pCO2 natural variability in the coastal ocean driven by different local and long-term processes.
Fig. 2: Surface pCO2 distribution at coastal regions.
Fig. 3: Mean response of different species grouped on eight marine taxa in relation to the ∆pCO2 exposure index.

Similar content being viewed by others

Data Availability

Data used in this paper is available online as Supplementary Dataset 1 and 2.

References

  1. Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).

    Article  Google Scholar 

  2. Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365 (2003).

    Article  CAS  Google Scholar 

  3. Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).

    Article  Google Scholar 

  4. Turley, C. & Gattuso, J.-P. Future biological and ecosystem impacts of ocean acidification and their socioeconomic-policy implications. Curr. Opin. Environ. Sustain. 4, 278–286 (2012).

    Article  Google Scholar 

  5. San Martin, V. A. et al. Linking social preferences and ocean acidification impacts in mussel aquaculture. Sci. Rep. 9, 4719 (2019).

    Article  Google Scholar 

  6. Falkenberg, L. et al. Ocean acidification and human health. Int. J. Environ. Res. Public Health 17, 4563 (2020).

    Article  CAS  Google Scholar 

  7. Loewe, M. & Rippin, N. The Sustainable Development Goals of the Post-2015 Agenda. Comments on the OWG and SDSN Proposals (German Development Institute 2015).

  8. Doney, S. C. et al. The impacts of ocean acidification on marine ecosystems and reliant human communities. Annu. Rev. Environ. Resour. 45, 83–112 (2020).

    Article  Google Scholar 

  9. Ekstrom, J. et al. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat. Clim. Change 5, 207–214 (2015).

    Article  Google Scholar 

  10. Ponce Oliva, R. D. et al. Ocean acidification, consumers’ preferences, and market adaptation strategies in the mussel aquaculture industry. Ecol. Econ. 158, 42–50 (2019).

    Article  Google Scholar 

  11. Quatrinni, A. M. et al. Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time. Nat. Ecol. Evol. 4, 1531–1538 (2020).

    Article  Google Scholar 

  12. Thomsen, J. et al. Naturally acidified habitat selects for ocean acidification-tolerant mussels. Sci. Adv. 3, e1602411 (2017).

    Article  Google Scholar 

  13. Rastrick, S. S. P. et al. Using natural analogues to investigate the effects of climate change and ocean acidification on Northern ecosystems. ICES J. Mar. Sci. 75, 2299–2311 (2018).

    Article  Google Scholar 

  14. Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents reveal ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).

    Article  CAS  Google Scholar 

  15. Agostini, S. et al. Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical–temperate transition zone. Sci. Rep. 8, 11354 (2018).

    Article  Google Scholar 

  16. Riquelme-Bugueño, R. et al. Diel vertical migration into anoxic and high-pCO2 waters: acoustic and net-based krill observations in the Humboldt Current. Sci. Rep. 10, 17181 (2020).

    Article  Google Scholar 

  17. Pérez et al. Riverine discharges impact physiological traits and carbon sources for shell carbonate in the marine intertidal mussel Perumytilus purpuratus. Limnol. Oceanogr. 61, 969–983 (2016).

    Article  Google Scholar 

  18. Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 0084 (2017).

    Article  Google Scholar 

  19. Saavedra et al. Local habitat influences on feeding and respiration of the intertidal mussels Perumytilus purpuratus exposed to increased pCO2 levels. Estuaries Coast. 41, 1118–1129 (2018).

    Article  CAS  Google Scholar 

  20. Riebesell, U. & Gattuso, J.-P. Lessons learned from ocean acidification research. Nat. Clim. Change 5, 12–14 (2015).

    Article  CAS  Google Scholar 

  21. Tilbrook, B. et al. An enhanced ocean acidification observing network: from people to technology to data synthesis and information exchange. Front. Mar. Sci. 6, 337 (2019).

    Article  Google Scholar 

  22. Barry, J. P., Hall-Spencer, J. M. and Tyrrell, T. in Guide to Best Practices for Ocean Acidification Research and Data Reporting (eds Riebesell, U. et al.) Ch. 3 (Publications Office of the European Union, 2010).

  23. Vargas, C. A. et al. Influence of glacier melting and river discharges on the nutrient distribution and DIC recycling in the southern Chilean Patagonia. J. Geophys. Res. Biogeosci. 123, 256–270 (2018).

    Article  Google Scholar 

  24. Feely, R. A. et al. Evidence for upwelling of corrosive ‘acidified’ water onto the Continental Shelf. Science 320, 1490–1492 (2008).

    Article  CAS  Google Scholar 

  25. Vargas, C. A. et al. Riverine and corrosive upwelling waters influences on the carbonate system in the coastal upwelling area off Central Chile: implications for coastal acidification events. J. Geophys. Res. Biogeosci. 121, 1468–1483 (2016).

    Article  Google Scholar 

  26. Cao, Z. et al. Dynamics of the carbonate system in a large continental shelf system under the influence of both a river plume and coastal upwelling. J. Geophys. Res. Oceans 116, G02010 (2010).

    Google Scholar 

  27. Feely, R. A. et al. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Est. Coast. Shelf Sci. 88, 442–449 (2010).

    Article  CAS  Google Scholar 

  28. Cai, W.-J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4, 766–770 (2011).

    Article  CAS  Google Scholar 

  29. Kwiatkowski, L. et al. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification. Sci. Rep. 6, 22984 (2016).

    Article  CAS  Google Scholar 

  30. Wolfe, K., Nguyen, H. D., Davey, M. & Byrne, M. Characterizing biogeochemical fluctuations in a world of extremes: a synthesis for temperate intertidal habitats in the face of global change. Glob. Change Biol. 26, 3858–3879 (2020).

    Article  Google Scholar 

  31. Shaw, E. C., Phinn, S. R., Tilbrook, B. & Steven, A. Natural in situ relationships suggest coral reef calcium carbonate production will decline with ocean acidification. Limnol. Oceanogr. 60, 777–788 (2015).

    Article  Google Scholar 

  32. Takeshita, Y. et al. Coral reef carbonate chemistry variability at different functional scales. Front. Mar. Sci. 5, 175 (2018).

    Article  Google Scholar 

  33. Brodeur, J. R. et al. Chesapeake Bay inorganic carbon: spatial distribution and seasonal variability. Front. Mar. Sci. 6, 99 (2019).

    Article  Google Scholar 

  34. Hoshijima, U. & Hofmann, G. E. Variability of seawater chemistry in a kelp forest environment is linked to in situ transgenerational effects in the purple sea urchin, Strongylocentrotus purpuratus. Front. Mar. Sci. 6, 62 (2019).

    Article  Google Scholar 

  35. Koweek, D. A. et al. A year in the life of a central California kelp forest: physical and biological insights into biogeochemical variability. Biogeosciences 14, 31–44 (2017).

    Article  CAS  Google Scholar 

  36. Cornwall, C. E. & Hurd, C. L. Experimental design in ocean acidification research: problems and solutions. ICES J. Mar. Sci. 73, 572–581 (2016).

    Article  Google Scholar 

  37. Kapsenberg, L. & Hofmann, G. E. Ocean pH time-series and drivers of variability along the northern Channel Islands, California, USA. Limnol. Oceanogr. 61, 953–968 (2016).

    Article  Google Scholar 

  38. Hofmann, G. E. et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6, e28983 (2011).

    Article  CAS  Google Scholar 

  39. Baumann, H. Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: how far have we come? Can. J. Zool. 97, 399–408 (2019).

    Article  Google Scholar 

  40. Cornwall, C. E. et al. Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proc. R. Soc. B 280, 20132201 (2013).

    Article  Google Scholar 

  41. Rivest, E. B., Comeau, S. & Cornwall, C. E. The role of natural variability in shaping the response of coral reef organisms to climate change. Curr. Clim. 3, 271–281 (2017).

    Article  Google Scholar 

  42. Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Annu. Rev. Mar. Sci. 3, 509–535 (2011).

    Article  Google Scholar 

  43. Lewis, C. N. et al. Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice. Proc. Natl Acad. Sci. USA 110, E4960–E4967 (2013).

    Article  CAS  Google Scholar 

  44. Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573–583 (2007).

    Article  Google Scholar 

  45. Aguilera, V. M., Vargas, C. A. & Dewitte, B. Intraseasonal hydrographic variations and nearshore carbonates system off northern Chile during the 2015 El Niño event. J. Geophys. Res. Biogeosci. 125, e2020JG005704 (2020).

    Article  CAS  Google Scholar 

  46. Fassbender, A. J. et al. Seasonal carbonate chemistry variability in marine surface waters of the US Pacific Northwest. Earth Syst. Sci. Data 10, 1367–1401 (2018).

    Article  Google Scholar 

  47. Reum, J. C. P. et al. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments. PLoS ONE 9, e89619 (2014).

    Article  Google Scholar 

  48. Wallace, R. B. et al. Coastal ocean acidification: the other eutrophication problem. Estuar. Coast. Shelf Sci. 148, 1–13 (2014).

    Article  CAS  Google Scholar 

  49. Rutgersson, A. et al. The annual cycle of carbon dioxide and parameters influencing the air–sea carbon exchange in the Baltic Proper. J. Mar. Syst. 74, 381–394 (2008).

    Article  Google Scholar 

  50. Clargo, N. M., Salt, L. A., Thomas, H. & de Baar, H. J. W. Rapid increase of observed DIC and pCO2 in the surface waters of the North Sea in the 2001–2011 decade ascribed to climate change superimposed by biological processes. Mar. Chem. 177, 566–581 (2015).

    Article  CAS  Google Scholar 

  51. Ericson, Y. et al. Temporal variability in surface water pCO2 in Adventfjorden (West Spitsbergen) with emphasis on physical and biogeochemical drivers. J. Geophys. Res. Oceans 123, 4888–4905 (2018).

    Article  CAS  Google Scholar 

  52. Geilfus, N.-X. et al. Spatial and temporal variability of seawater pCO2 within the Canadian Arctic Archipelago and Baffin Bay during the summer and autumn 2011. Cont. Shelf Res. 156, 1–10 (2018).

    Article  Google Scholar 

  53. Islam, F. et al. Sea surface pCO2 and O2 dynamics in the partially ice-covered Arctic Ocean. J. Geophys. Res. Oceans 122, 1425–1438 (2016).

    Article  Google Scholar 

  54. Copin-Montégut, C., Bégovic, M. & Merlivat, L. Variability of the partial pressure of CO2 on diel to annual time scales in the Northwestern Mediterranean Sea. Mar. Chem. 85, 169–189 (2004).

    Article  Google Scholar 

  55. Pardo, P. C. et al. Surface ocean carbon dioxide variability in South Pacific boundary currents and Subantarctic waters. Sci. Rep. 9, 7592 (2019).

    Article  Google Scholar 

  56. Gagliano, M., McCormick, M. I., Moore, J. A. & Depczynski, M. The basics of acidification: baseline variability of pH on Australian coral reefs. Mar. Biol. 157, 1849–1856 (2010).

    Article  CAS  Google Scholar 

  57. Takeshita, Y. et al. Including high-frequency variability in coastal acidification projections. Biogeosciences 12, 5853–5870 (2015).

    Article  Google Scholar 

  58. Carter, H. A., Ceballos-Osuna, L., Miller, N. A. & Stillman, J. H. Impact of ocean acidification on metabolism and energetics during early life stages of the intertidal porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 216, 1412–1422 (2013).

    Article  CAS  Google Scholar 

  59. Ceballos-Osuna, L., Carter, H. A., Miller, N. A. & Stillman, J. H. Effects of ocean acidification on early life-history stages of the intertidal porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 216, 1405–1411 (2013).

    Article  CAS  Google Scholar 

  60. Miller, S. H. et al. Effect of elevated pCO2 on metabolic responses of porcelain crab (Petrolisthes cinctipes) larvae exposed to subsequent salinity stress. PLoS ONE 9, e109167 (2014).

    Article  Google Scholar 

  61. Bayne, B. L. Metabolic expenditure. Dev. Aquacult. Fish. Sci. 41, 331–415 (2017).

    Google Scholar 

  62. Waldbusser, G. G. et al. Slow shell building, a possible trait for resistance to the effects of acute ocean acidification. Limnol. Oceanogr. 61, 1969–1983 (2016).

    Article  Google Scholar 

  63. Dorey, N., Lancon, P., Thorndyke, M. & Dupont, S. Assessing physiological tipping point for sea urchin larvae exposed to a broad range of pH. Glob. Change Biol. 19, 3355–3367 (2013).

    Google Scholar 

  64. Kelly, M. W., Padilla-Gamiño, J. L. & Hofmann, G. E. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus. Glob. Change Biol. 19, 2536–2546 (2015).

    Article  Google Scholar 

  65. Gaitán-Espitia, J. D. et al. Spatio–temporal environmental variation mediates geographical differences in phenotypic responses to ocean acidification. Biol. Lett. 13, 20160865 (2017).

    Article  Google Scholar 

  66. Calosi, P. et al. Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid–base and ion-regulatory abilities. Mar. Pollut. Bull. 73, 470–484 (2013).

    Article  CAS  Google Scholar 

  67. Foo, S. A., Dworjanyn, S. A., Poore, A. G. B. & Byrne, M. Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: performance of early embryos. PLoS ONE 7, e42497 (2012).

    Article  CAS  Google Scholar 

  68. Chan, K. Y. K., Grünbaum, D., Arnberg, M. & Dupont, S. Impacts of ocean acidification on survival, growth, and swimming behaviours differ between larval urchins and brittlestars. ICES J. Mar. Sci. 73, 951–996 (2016).

    Article  Google Scholar 

  69. Stumpp, M. et al. Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proc. Natl Acad. Sci. USA 109, 18192–18197 (2012).

    Article  CAS  Google Scholar 

  70. Stumpp, M. et al. Digestion in sea urchin larvae impaired under ocean acidification. Nat. Clim. Change 3, 1044–1049 (2013).

    Article  CAS  Google Scholar 

  71. Thor, P. & Dupont, S. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob. Change Biol. 21, 2261–2271 (2015).

    Article  Google Scholar 

  72. Gibbin, E. M. et al. The evolution of phenotypic plasticity under global change. Sci. Rep. 7, 17253 (2017).

    Article  Google Scholar 

  73. Gibbin, E. M. et al. Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life history and physiology in a marine metazoan? J. Exp. Biol. 220, 551–563 (2017).

    Google Scholar 

  74. Dam, H. G. et al. Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification. Nat. Clim. Change 11, 780–786 (2021).

    Article  Google Scholar 

  75. Byrne, M. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr. Mar. Biol. 49, 1–42 (2011).

    Google Scholar 

  76. Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).

    Article  Google Scholar 

  77. Kroeker et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).

    Article  Google Scholar 

  78. Takahashi, T., Sutherland, S. C. & Kozyr, A. LDEO Database (Version 2019): Global Ocean Surface Water Partial Pressure of CO2 Database: Measurements Performed During 1957–2019 (NCEI Accession 0160492) Version 9.9 (National Oceanic and Atmospheric Administration National Centers for Environmental Information); https://doi.org/10.3334/CDIAC/OTG.NDP088(V2015)

  79. Manly, B. F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology (CRC Press, 1997).

  80. Martinez, W. L. & Martinez, A. R. Computational Statistics Handbook with MATLAB (CRC Press, 2002).

Download references

Acknowledgements

This work was supported by FONDECYT project number 1210171 to C.A.V. and 1181300 to B.R.B. Additional support from the Agencia Nacional de Investigación y Desarrollo (ANID)–Millennium Science Initiative Program–Millennium Institute of Oceanography (IMO) ICN12_019, the Coastal Socio-Ecological Millennium Institute (SECOS) ICN2019_015 and the Millennium Science Initiative Nucleus–Understanding Past coastal upWelling systems and Environmental Local and Lasting impacts (UPWELL) NCN19-153 is also acknowledged. S.D. is funded by the Swedish Research Councils Formas. We greatly thank F. Gamonal from IMO for the design of Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

All authors provided input into data availability and preliminary discussions. C.A.V., B.R.B. and L.A.C. carried out data analysis, and C.A.V. designed the main structure of the study. C.A.V. led the drafting of the text with contributions from S.D., B.R.B., L.A.C., J.D.G.-E., N.A.L. and V.A.S.M.

Corresponding author

Correspondence to Cristian A. Vargas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Hannes Baumann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Table 1.

Reporting Summary.

41558_2021_1269_MOESM3_ESM.xlsx

Supplementary Dataset 1: pCO2 values extracted from the LDEO database version 2019 used in this study and separated by coastal regions. Date of sampling and coordinates of each position have been included.

41558_2021_1269_MOESM4_ESM.xlsx

Supplementary Dataset 2: List of all taxa, life stage CO2 values used for the different biological traits considered in our study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas, C.A., Cuevas, L.A., Broitman, B.R. et al. Upper environmental pCO2 drives sensitivity to ocean acidification in marine invertebrates. Nat. Clim. Chang. 12, 200–207 (2022). https://doi.org/10.1038/s41558-021-01269-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-021-01269-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing