Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unintended consequences of climate change mitigation for African river basins

Abstract

Emerging climate change mitigation policies focus on the implementation of global measures relying on carbon prices to attain rapid emissions reductions, with limited consideration for the impacts of global policies at local scales. Here, we use the Zambezi Watercourse in southern Africa to demonstrate how local dynamics across interconnected water–energy–food systems are impacted by mitigation policies. Our results indicate that climate change mitigation policies related to land-use change emissions can have negative side effects on local water demands, generating increased risks for failures across all the components of the water–energy–food systems in the Zambezi Watercourse. Analogous vulnerabilities could impact many river basins in southern and western Africa. It is critical to connect global climate change mitigation policies to local dynamics for a better exploration of the full range of possible future scenarios while supporting policy makers in prioritizing sustainable mitigation and adaptation solutions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Locations of dams and irrigation districts in the ZW.
Fig. 2: Future system vulnerabilities.
Fig. 3: Analysis of socioeconomic scenarios generated by GCAM.
Fig. 4: Projected vulnerabilities of African regions.

Similar content being viewed by others

Data availability

All climate data are freely available at the following websites: historical precipitation: https://chc.ucsb.edu/data/chirps, historical temperature: http://hydrology.princeton.edu/data.metdata_africa.php, projected precipitation and temperature: http://www.csag.uct.ac.za/cordex-africa/ (see Supplementary Table 3). Data about the socioeconomic scenarios produced by GCAM simulations are available in the Github repository: https://github.com/JRLamontagne/Factorial_SSP-SPA_Exploration. Bias-adjusted climate projections and corresponding simulated streamflow are available in the open-source repository https://doi.org/10.5281/zenodo.572694168. All the historical hydrologic data on the Zambezi River basin are from the Zambezi River Authority (ZRA) and were collected during the DAFNE project (http://dafne-project.eu/). They are protected by a nondisclosure agreement with ZRA. Source data are provided with this paper.

Code availability

The code of the HBV models is available in the open-source repository https://doi.org/10.5281/zenodo.572694169. Because the Zambezi Watercourse model described in Supplementary Section 2 contains sensitive hydrologic data, along with hydropower plant characteristics from ZRA, Zambia Electricity Supply Corporation (ZESCO) and Hidroeléctrica de Cahora Bassa (HCB), it cannot be made public. The simulation outputs and the code for generating the figures can be, however, found in the open-source repository https://doi.org/10.5281/zenodo.572694169.

References

  1. Lamontagne, J., Reed, P., Marangoni, G., Keller, K. & Garner, G. Robust abatement pathways to tolerable climate futures require immediate global action. Nat. Clim. Change 9, 290–294 (2019).

    Article  Google Scholar 

  2. Luderer, G. et al. Residual fossil CO2 emissions in 1.5–2 °C pathways. Nat. Clim. Change 8, 626–633 (2018).

    Article  CAS  Google Scholar 

  3. van Vuuren, D., Hof, A., van Sluisveld, M. & Riahi, K. Open discussion of negative emissions is urgently needed. Nat. Energy 2, 902–904 (2017).

    Article  Google Scholar 

  4. Santos Da Silva, S. et al. The Paris pledges and the energy–water–land nexus in Latin America: exploring implications of greenhouse gas emission reductions. PLoS ONE 14, e0215013 (2019).

  5. Fujimori, S. et al. A multi-model assessment of food security implications of climate change mitigation. Nat. Sustain. 2, 386–396 (2019).

    Article  Google Scholar 

  6. Rogelj, J., McCollum, D., O’Neill, B. & Riahi, K. 2020 emissions levels required to limit warming to below 2 °C. Nat. Clim. Change 3, 405–412 (2013).

    Article  CAS  Google Scholar 

  7. Tavoni, M. et al. Post-2020 climate agreements in the major economies assessed in the light of global models. Nat. Clim. Change 5, 119–126 (2015).

    Article  Google Scholar 

  8. Garner, G., Reed, P. & Keller, K. Climate risk management requires explicit representation of societal trade-offs. Climatic Change 134, 713–723 (2016).

    Article  Google Scholar 

  9. Dearing, J. et al. Safe and just operating spaces for regional social–ecological systems. Glob. Environ. Change 28, 227–238 (2014).

    Article  Google Scholar 

  10. Kling, H., Stanzel, P. & Preishuber, M. Impact modelling of water resources development and climate scenarios on Zambezi River discharge. J. Hydrol. Reg. Stud. 1, 17–43 (2014).

    Article  Google Scholar 

  11. Payet-Burin, R., Kromann, M., Pereira-Cardenal, S., Strzepek, K. & Bauer-Gottwein, P. WHAT-IF: an open-source decision support tool for water infrastructure investment planning within the water–energy–food–climate nexus. Hydrol. Earth Syst. Sci. 23, 4129–4152 (2019).

    Article  Google Scholar 

  12. Fant, C., Gebretsadik, Y., McCluskey, A. & Strzepek, K. An uncertainty approach to assessment of climate change impacts on the Zambezi River basin. Clim. Change 130, 35–48 (2015).

    Article  CAS  Google Scholar 

  13. Spalding-Fechera, R., Joyceb, B. & Winklerc, H. Climate change and hydropower in the Southern African Power Pool and Zambezi River basin: system-wide impacts and policy implications. Energy Policy 103, 84–97 (2017).

    Article  Google Scholar 

  14. GCAM v4.3 Documentation: Global Change Assessment Model (GCAM) (JGCRI, 2017).

  15. Thomson, A. et al. RCP 4.5: a pathway for stabilization of radiative forcing by 2100. Clim. Change 109, 77–94 (2011).

    Article  CAS  Google Scholar 

  16. Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6 (Cambridge Univ. Press, 2014).

  17. Calvin, K. et al. The SSP4: a world of deepening inequality. Glob. Environ. Change 42, 284–296 (2017).

    Article  Google Scholar 

  18. van Vuuren, D. et al. The shared socio-economic pathways: trajectories for human development and global environmental change. Glob. Environ. Change 42, 148–152 (2017).

    Article  Google Scholar 

  19. Kriegler, E., Edmonds, J. & Hallegatte, S. A new scenario framework for climate change research: the concept of shared climate policy assumptions. Climatic Change 122, 401–414 (2014).

    Article  Google Scholar 

  20. Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  21. Lamontagne, J. et al. Large ensemble analytic framework for consequence-driven discovery of climate change scenarios. Earth’s Future 6, 488–504, (2018).

  22. Li, X. et al. Tethys–a Python package for spatial and temporal downscaling of global water withdrawals. J. Open Res. Softw. 6, 9 (2018).

  23. Huang, Z. et al. Global agricultural green and blue water consumption under future climate and land use changes. J. Hydrol. 574, 242–256 (2019).

    Article  Google Scholar 

  24. van Vuuren, D. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

  25. Sadoff, C., Whittington, D. & Grey, D. Africa’s International Rivers: An Economic Perspective (World Bank, 2003).

  26. Beilfuss, R. in The Wetland Book (ed. Finlayson, C.) 1–9 (Springer, 2016).

  27. The Zambezi River Basin. A Multi-Sector Investment Opportunities Analysis (World Bank, 2010).

  28. Jeuland, M. & Whittington, D. Water resources planning under climate change: assessing the robustness of real options for the Blue Nile. Water Resour. Res. 50, 2086–2107 (2014).

    Article  Google Scholar 

  29. Warner, J. J. S., Jones, E., Ansari, M. & De Vries, L. The fantasy of the Grand Inga hydroelectric project on the River Congo. Water 11, 407 (2019).

    Article  Google Scholar 

  30. Winemiller, K. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    Article  CAS  Google Scholar 

  31. Conway, D. et al. Climate and southern Africa’s water–energy–food nexus. Nat. Clim. Change 5, 837–846 (2015).

    Article  Google Scholar 

  32. Strategic Plan for the Zambezi Watercourse 2018–2040 (ZAMCOM, 2019).

  33. Cervigni, R., Liden, R., Neumann, J. & Strzepek, K. Enhancing the Climate Resilience of Africa’s Infrastructure: The Power and Water Sectors (World Bank, 2015).

  34. World Database of Key Biodiversity Areas (BirdLife International, 2018); www.keybiodiversityareas.org

  35. Beilfuss, R. & dos Santos, D. Program for the Sustainable Management of Cahora Bassa Dam and the Lower Zambezi Valley. Working Paper http://www.xitizap.com/zambeze-hydrochanges.pdf (2001).

  36. Coello Coello, C., Lamont, G. & Veldhuizen, D. V. Evolutionary Algorithms for Solving Multi-Objective Problems (Springer, 2007).

  37. Tilmant, A., Beevers, L. & Muyunda, B. Restoring a flow regime through the coordinated operation of a multireservoir system: the case of the Zambezi River basin. Water Resour. Res. 46, W07533 (2010).

  38. Rulli, M., Saviori, A. & D’Odorico, P. Global land and water grabbing. Proc. Natl Acad. Sci. USA 110, 892–897 (2013).

    Article  CAS  Google Scholar 

  39. Zarfl, C., Lumsdon, A., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).

    Article  Google Scholar 

  40. Graham, N. et al. Humans drive future water scarcity changes across all shared socioeconomic pathways. Environ. Res. Lett. 15, 014007 (2020).

  41. Liu, L., Hejazi, M., Iyer, G. & Forman, B. Implications of water constraints on electricity capacity expansion in the United States. Nat. Sustain. 2, 206–213 (2019).

    Article  Google Scholar 

  42. McCollum, D., Gambhir, A., Rogelj, J. & Wilson, C. Energy modellers should explore extremes more systematically in scenarios. Nat. Energy 5, 104–107 (2020).

    Article  Google Scholar 

  43. Schlosberg, D. & Collins, L. From environmental to climate justice: climate change and the discourse of environmental justice. Wiley Interdiscip. Rev. Clim. Change 5, 359–374 (2014).

    Article  Google Scholar 

  44. Taconet, N., Méjean, A. & Guivarch, C. Influence of climate change impacts and mitigation costs on inequality between countries. Climatic Change 160, 15–34 (2020).

  45. Lindström, G., Johansson, B., Persson, M., Gardelin, M. & Bergström, S. Development and test of the distributed HBV-96 hydrological model. J. Hydrol. 201, 272–288 (1997).

    Article  Google Scholar 

  46. Akhtar, M., Ahmad, N. & Booij, M. Use of regional climate model simulations as input for hydrological models for the Hindukush–Karakorum–Himalaya region. Hydrol. Earth Syst. Sci. 13, 1075–1089 (2009).

    Article  Google Scholar 

  47. Bergström, S. et al. in Climate Change and Energy Systems Impacts, Risks and Adaptation in the Nordic and Baltic Countries (eds Thorsteinsson, T. & Björnsson, H.) 13–146 (Nordic Council of Ministers, 2012).

  48. Vrochidou, A., Tsanis, I., Grillakis, M. & Koutroulis, A. The impact of climate change on hydrometeorological droughts at a basin scale. J. Hydrol. 476, 290–301 (2013).

    Article  Google Scholar 

  49. Hamududu, B. & Killingtveit, A. Hydropower production in future climate scenarios; the case for the Zambezi River. Energies 9, 502 (2016).

  50. Funk, C., Peterson, P. & Landsfeld, M. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes Sci. Data 2, 150066 (2015).

  51. Chaney, N., Sheffield, J., Villarini, G. & Wood, E. Development of a high-resolution gridded daily meteorological dataset over sub-Saharan Africa: spatial analysis of trends in climate extremes. J. Clim. 27, 5815–5835 (2014).

    Article  Google Scholar 

  52. Soncini-Sessa, R., Castelletti, A. & Weber, E. Integrated and Participatory Water Resources Management: Theory (Elsevier, 2007).

  53. Celeste, A. & Billib, M. Evaluation of stochastic reservoir operation optimization models. Adv. Water Res. 32, 1429–1443 (2009).

    Article  Google Scholar 

  54. AQUASTAT – FAO’s Global Information System on Water and Agriculture. FAO https://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/map-quality

  55. Castelletti, A., Pianosi, F. & Soncini-Sessa, R. Water reservoir control under economic, social and environmental constraints. Automatica 44, 1595–1607 (2008).

    Article  Google Scholar 

  56. Bertoni, F., Castelletti, A., Giuliani, M. & Reed, P. Discovering dependencies, trade-offs, and robustness in joint dam design and operation: an ex-post assessment of the Kariba dam. Earth’s Future 7, 1367–1390 (2019).

    Article  Google Scholar 

  57. Giuliani, M., Castelletti, A., Pianosi, F., Mason, E. & Reed, P. Curses, tradeoffs, and scalable management: advancing evolutionary multi-objective direct policy search to improve water reservoir operations. J. Water Resour. Plan. Manage. 142, 04015050 (2016).

  58. Busoniu, L., Ernst, D., De Schutter, B. & Babuska, R. Cross-entropy optimization of control policies with adaptive basis functions. IEEE Trans. Syst. Man Cybern. B 41, 196–209 (2011).

    Article  Google Scholar 

  59. Hadka, D. & Reed, P. Borg: an auto-adaptive many-objective evolutionary computing framework. Evol. Comput. 21, 231–259 (2013).

    Article  Google Scholar 

  60. Giuliani, M., Quinn, J., Herman, J., Castelletti, A. & Reed, P. Scalable multiobjective control for large-scale water resources systems under uncertainty. IEEE Trans. Control Syst. Technol. 26, 1492–1499 (2018).

    Article  Google Scholar 

  61. Blöschl, G. et al. Twenty-three unsolved problems in hydrology (UPH)—a community perspective. Hydrol. Sci. J. 64, 1141–1158 (2019).

    Article  Google Scholar 

  62. Elsawah, S. et al. Eight grand challenges in socio-environmental systems modeling. Socioenviron. Syst. Model. 2, 16226–16226 (2020).

    Google Scholar 

  63. Giorgi, F., Jones, C. & Asrar, G. R. Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol. Org. Bull. 58, 175–183 (2009).

  64. Dosio, A. et al. What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Clim. Dyn. 53, 5833–5858 (2019).

    Article  Google Scholar 

  65. Dolan, F. et al. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. 12, 1915 (2021).

  66. Zhang, X. et al. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Change 2, 851–870 (2011).

    Article  Google Scholar 

  67. Mosnier, A. et al. Modeling impact of development trajectories and a global agreement on reducing emissions from deforestation on Congo basin forests by 2030. Environ. Resour. Econ. 57, 505–525 (2014).

    Article  Google Scholar 

  68. Hattermann, F. et al. Sources of uncertainty in hydrological climate impact assessment: a cross-scale study. Environ. Res. Lett. 13, 015006 (2018).

    Article  Google Scholar 

  69. Giuliani, M. & Lamontagne, J. R. First release of ZambeziWatercourse_GCAM code (v1.0-alpha). Zenodo https://doi.org/10.5281/zenodo.5726941 (2021).

Download references

Acknowledgements

The authors thank A. Amaranto, B. Benigni, F. Bertoni, A. Birnbaum, F. Dolan and S. Raimondo for their contribution in developing initial numerical experiments. The authors also thank M. Mutale (executive secretary of the Zambezi Watercourse Commission) for the feedbacks provided during the DAFNE project. Co-authors M.G. and A.C. have been partially supported by DAFNE under H2020 framework programme of the European Union, grant number 690268.

Author information

Authors and Affiliations

Authors

Contributions

M.G., J.R.L. and A.C. designed the research and writing of the paper. M.G. and J.R.L. conducted the numerical experiments and led the data analysis. M.I.H. and P.M.R. contributed to analysis of results and writing of the paper.

Corresponding author

Correspondence to Andrea Castelletti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Simon Parkinson, Raphaël Payet-Burin, Piotr Wolski and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20, Tables 1–3 and Sections 1–3.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giuliani, M., Lamontagne, J.R., Hejazi, M.I. et al. Unintended consequences of climate change mitigation for African river basins. Nat. Clim. Chang. 12, 187–192 (2022). https://doi.org/10.1038/s41558-021-01262-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-021-01262-9

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene