Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phenological mismatches between above- and belowground plant responses to climate warming

Abstract

Climate warming is changing the aboveground phenology of plants around the world. However, the effects of warming on the belowground phenology of plants remain relatively under-investigated, even though roots play a vital role in carbon cycling. Here we synthesize 88 published studies to show a phenological mismatch between above- and belowground plant responses to climate warming. For herbaceous plants, warming advanced both the start and end of aboveground growing season, resulting in an unchanged growing season length. In contrast, belowground phenophases (the start, end and length of the growing season) of herbaceous plants remained unchanged. For woody plants, climate warming did not affect any aboveground phenophases but extended their belowground growing season. Mismatches between above- and belowground phenology will strongly influence biomass allocation in plants, implying that terrestrial carbon cycling models based exclusively on aboveground responses are inaccurate. The work highlights an urgent need for future research of under-represented belowground phenological changes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global distribution of warming experiments included in this meta-analysis.
Fig. 2: Temperature sensitivity of above- and belowground phenophases to experimental warming.
Fig. 3: Key predictors explaining temperature sensitivity of phenophases for herbaceous plants.
Fig. 4: Key predictors explaining temperature sensitivity of phenophases for woody plants.

Data availability

The data used in the current study are available in the Figshare repository: https://figshare.com/s/1f086364114021cd80d959.

Code availability

The data analysis was carried out in R 3.6.1. The complete codes used to generate the results reported in this study are available in the Figshare repository: https://figshare.com/s/1f086364114021cd80d959.

References

  1. Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Article  Google Scholar 

  2. Forrest, J. & Miller-Rushing, A. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. R. Soc. B 365, 3101–3112 (2010).

    Article  Google Scholar 

  3. Lane, J. E., Kruuk, L., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).

    Article  CAS  Google Scholar 

  4. Richardson, A. D. et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 560, 368–371 (2018).

    Article  CAS  Google Scholar 

  5. Abramoff, R. Z. & Finzi, A. C. Are above- and below-ground phenology in sync? New Phytol. 205, 1054–1061 (2015).

    Article  Google Scholar 

  6. Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).

    Article  Google Scholar 

  7. Smithwick, E., Lucash, M. S., Mccormack, M. L. & Sivandran, G. Improving the representation of roots in terrestrial models. Ecol. Model. 291, 193–204 (2014).

    Article  CAS  Google Scholar 

  8. Warren, J. M. et al. Root structural and functional dynamics in terrestrial biosphere models – evaluation and recommendations. New Phytol. 205, 59–78 (2015).

    Article  Google Scholar 

  9. Ma, H., Mo, L., Crowther, T. W., Maynard, D. S. & Zohner, C. M. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol. 5, 1110–1122 (2021).

    Article  Google Scholar 

  10. Neumann, R. B. & Cardon, Z. G. The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies. New Phytol. 194, 337–352 (2012).

    Article  Google Scholar 

  11. Lucas, M., Schlueter, S., Vogel, H.-J. & Vetterlein, D. Roots compact the surrounding soil depending on the structures they encounter. Sci. Rep. 9, 16236 (2019).

    Article  Google Scholar 

  12. Oades, J. M. The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56, 377–400 (1993).

    Article  Google Scholar 

  13. Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).

    Article  CAS  Google Scholar 

  14. Roslin, T., Anto, L., Hllfors, M., Meyke, E. & Ovaskainen, O. Phenological shifts of abiotic events, producers and consumers across a continent. Nat. Clim. Change 11, 241–248 (2021).

    Article  Google Scholar 

  15. Radville, L., McCormack, M. L., Post, E. & Eissenstat, D. M. Root phenology in a changing climate. J. Exp. Bot. 67, 3617–3628 (2016).

    Article  CAS  Google Scholar 

  16. Blume-Werry, G., Jansson, R. & Milbau, A. Root phenology unresponsive to earlier snowmelt despite advanced above‐ground phenology in two subarctic plant communities. Funct. Ecol. 31, 1493–1502 (2017).

    Article  Google Scholar 

  17. Wilson, J. B. A review of evidence on the control of shoot:root ratio, in relation to models. Ann. Bot. 61, 433–449 (1988).

    Article  Google Scholar 

  18. Schwieger, S., Kreyling, J., Milbau, A. & Blume-Werry, G. Autumnal warming does not change root phenology in two contrasting vegetation types of subarctic tundra. Plant Soil 424, 145–156 (2018).

    Article  CAS  Google Scholar 

  19. Liu, H., Lu, C., Wang, S., Ren, F. & Wang, H. Climate warming extends growing season but not reproductive phase of terrestrial plants. Glob. Ecol. Biogeogr. 30, 950–960 (2021).

    Article  Google Scholar 

  20. Steinaker, D. F., Wilson, S. D. & Peltzer, D. A. Asynchronicity in root and shoot phenology in grasses and woody plants. Glob. Change Biol. 16, 2241–2251 (2010).

    Article  Google Scholar 

  21. Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).

    Article  CAS  Google Scholar 

  22. Thakur, M. P. Climate warming and trophic mismatches in terrestrial ecosystems: the green–brown imbalance hypothesis. Biol. Lett. 16, 20190770 (2020).

    Article  Google Scholar 

  23. Wang, H. et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 23, 701–710 (2020).

    Article  Google Scholar 

  24. Chuine, I. A united model for budburst of trees. J. Theor. Biol. 2007, 337–347 (2000).

    Article  Google Scholar 

  25. Lim, P. O., Kim, H. J. & Gil Nam, H. Leaf senescence. Annu. Rev. Plant Biol. 58, 115–136 (2007).

    Article  CAS  Google Scholar 

  26. Reich, P. B., Walters, M. & Ellsworth, D. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 62, 365–392 (1992).

    Article  Google Scholar 

  27. Körner, C. & Basler, D. Phenology under global warming. Science 327, 1461–1462 (2010).

    Article  Google Scholar 

  28. Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).

    Article  CAS  Google Scholar 

  29. Wolkovich, E. M. et al. Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494–497 (2012).

    Article  CAS  Google Scholar 

  30. López-Bucio, J., Cruz-Ramírez, A. & Herrera-Estrella, L. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6, 280–287 (2003).

    Article  Google Scholar 

  31. Friedl, M. A. et al. Global land cover mapping from MODIS: algorithms and early results. Remote Sens. Environ. 83, 287–302 (2002).

    Article  Google Scholar 

  32. Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).

    Article  Google Scholar 

  33. Hollister, R. D., Webber, P. J. & Bay, C. Plant response to temperature in northern Alaska: implications for predicting vegetation change. Ecology 86, 1562–1570 (2005).

    Article  Google Scholar 

  34. Song, J. et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 3, 1309–1320 (2019).

    Article  Google Scholar 

  35. Collins, C. G. et al. Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nat. Commun. https://doi.org/10.1038/s41467-021-23841-2 (2021).

  36. Reyes-Fox, M. et al. Elevated CO2 further lengthens growing season under warming conditions. Nature 510, 259–267 (2014).

    Article  CAS  Google Scholar 

  37. Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B 365, 3227–3246 (2010).

    Article  Google Scholar 

  38. Wingler, A. & Hennessy, D. Limitation of grassland productivity by low temperature and seasonality of growth. Front. Plant Sci. 7, 1130 (2016).

    Article  Google Scholar 

  39. Schenk, H. J. & Jackson, R. B. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol. 90, 480–494 (2002).

    Article  Google Scholar 

  40. Wang, P., Huang, K. & Hu, S. Distinct fine-root responses to precipitation changes in herbaceous and woody plants: a meta-analysis. New Phytol. 225, 1491–1499 (2020).

    Article  Google Scholar 

  41. Arft, A. et al. Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecol. Monogr. 69, 491–511 (1999).

    Google Scholar 

  42. Fu, Y. S. et al. Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc. Natl Acad. Sci. USA 111, 7355–7360 (2014).

    Article  CAS  Google Scholar 

  43. Seastedt, T. & Knapp, A. Consequences of nonequilibrium resource availability across multiple time scales: the transient maxima hypothesis. Am. Nat. 141, 621–633 (1993).

    Article  CAS  Google Scholar 

  44. Bai, E. et al. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol. 199, 441–451 (2013).

    Article  Google Scholar 

  45. Sakai, A. & Larcher, W. Frost Survival of Plants: Responses and Adaptation to Freezing Stress (Springer‐Verlag, 1987).

  46. Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).

    Article  CAS  Google Scholar 

  47. Luo, Y. Terrestrial carbon-cycle feedback to climate warming. Annu. Rev. Ecol. Evol. Syst. 38, 683–712 (2007).

    Article  Google Scholar 

  48. Hijmans, R. J., Ca Meron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2010).

    Article  Google Scholar 

  49. Sloan, V. L., Fletcher, B. J. & Phoenix, G. K. Contrasting synchrony in root and leaf phenology across multiple sub‐Arctic plant communities. J. Ecol. 104, 239–248 (2016).

    Article  CAS  Google Scholar 

  50. Kou, L. et al. Nitrogen deposition increases root production and turnover but slows root decomposition in Pinus elliottii plantations. New Phytol. 218, 1450–1461 (2018).

    Article  Google Scholar 

  51. Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta-analysis of ecological data. Ecology 78, 1277–1283 (1997).

    Article  Google Scholar 

  52. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Soft. 36, 1–48 (2010).

    Article  Google Scholar 

  53. Kattge, J. et al. TRY plant trait database-enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    Article  Google Scholar 

  54. De Martonne, E. Une nouvelle fonction climatologique: l’indice d’aridité. La MétéOrol. 2, 449–458 (1926).

    Google Scholar 

  55. Breiman, L. Classification and Regression Trees (Routledge, 2017).

  56. Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2/3, 18–22 (2002).

    Google Scholar 

  57. Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 10, 696–697 (2020).

    Article  Google Scholar 

  58. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  59. Liu, H. et al. Supporting data for ‘Phenological mismatches between above- and belowground plant responses to climate warming’. Figshare https://figshare.com/s/1f086364114021cd80d9 (2021).

Download references

Acknowledgements

H.L. was financially sponsored by the National Natural Science Foundation of China (31901168) and Shanghai Sailing Program (19YF1413200). H.W. was supported by the National Natural Science Foundation of China (31901145) and X.Z. was supported by the National Natural Science Foundation of China (31930072 and 31770559).

Author information

Authors and Affiliations

Authors

Contributions

H.L. and H.W. developed the idea, analysed the data and wrote the manuscript with substantial input from M.P.T. and X.Z. All authors contributed to the writing of the paper.

Corresponding author

Correspondence to Xuhui Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Gesche Blume-Werry and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Tables 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wang, H., Li, N. et al. Phenological mismatches between above- and belowground plant responses to climate warming. Nat. Clim. Chang. 12, 97–102 (2022). https://doi.org/10.1038/s41558-021-01244-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-021-01244-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing