Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Climate and land-use changes reduce the benefits of terrestrial protected areas

An Author Correction to this article was published on 19 April 2022

This article has been updated


Expanding and enhancing protected area networks (PAs) is at the forefront of efforts to conserve and restore global biodiversity but climate change and habitat loss can interact synergistically to undermine the potential benefits of PAs. Targeting conservation, adaptation and mitigation efforts requires understanding climate and land-use patterns within PAs, both currently and under future scenarios. Here, projecting rates of temporal and spatial displacement of climate and land-use revealed that more than one-quarter of the world’s PAs (~27%) are located in regions that will experience both high rates of climate change and land-use change by 2050. Substantial changes are expected to occur more often within PAs distributed across tropical moist and grassland biomes, which currently host diverse tetrapods and vascular plants, and fall into less-stringent management categories. Taken together, our findings can inform spatially adaptive natural resource management and actions to achieve sustainable development and biodiversity goals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spatial concordance of climate velocity projected under the RCP 8.5 and RCP 2.6 scenarios.
Fig. 2: Spatiotemporal distribution of climate velocity and land-use instability within terrestrial PAs globally.
Fig. 3: Global patterns of climate velocity and land-use instability.
Fig. 4: Distribution of climate velocity and land-use change within PAs across terrestrial biomes during the near future (2021–2050) relative to a global median during the baseline (1971–2000).
Fig. 5: Climate, human-dominated landscapes and forest growth potential during the 2021–2050.

Similar content being viewed by others

Data availability

All underlying raw model data are publicly available online. CORDEX climate data are available at Land-use Harmonization data are available at WDPA is freely available online at Protected Planet Network Expert-derived polygons of amphibians, mammals and reptiles are available online at the IUCN Red List Portal Polygons of birds’ distributions can be requested from BirdLife International Datasets on native richness of vascular plants were obtained from ref. 54. Biomes and ecoregional polygons are available at WWF database Map elements: (1) bounding box (‘ne_110m_wgs84_bounding_box’ layer) can be downloaded from Natural Earth database and (2) Land border was retrieved using the getMap() function of rworldmap library in R. Climate (temperature and precipitation) and land-use (cropland, primary forest, secondary forest, pasture, rangeland and urban) rasters for each period are available at Figshare (

Code availability

Authors calculated climate and land-use velocities using VoCC package of R statistical computing platform v.4.0.2 (ref. 49). Codes for visualizations are available on Figshare ( More information about the codes and data can be obtained from the corresponding author on request.

Change history


  1. Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    Article  CAS  Google Scholar 

  2. Juffe-Bignoli, D. et al. Protected Planet Report 2014 (UNEP-WCMC, 2014).

  3. Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).

  4. Xu, W. et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl Acad. Sci. USA 114, 1601–1606 (2017).

    Article  CAS  Google Scholar 

  5. Naidoo, R. et al. Evaluating the impacts of protected areas on human well-being across the developing world. Sci. Adv. 5, eaav3006 (2019).

    Article  CAS  Google Scholar 

  6. Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).

    Article  Google Scholar 

  7. Cazalis, V. et al. Effectiveness of protected areas in conserving tropical forest birds. Nat. Commun. 11, 4461 (2020).

  8. Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. 6, eaay0814 (2020).

    Article  Google Scholar 

  9. Hoffmann, S., Irl, S. D. H. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 4787 (2019).

  10. Batllori, E., Parisien, M. A., Parks, S. A., Moritz, M. A. & Miller, C. Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network. Glob. Change Biol. 23, 3219–3230 (2017).

    Article  Google Scholar 

  11. Ward, M. et al. Just ten percent of the global terrestrial protected area network is structurally connected via intact land. Nat. Commun. 11, 4563 (2020).

    Article  CAS  Google Scholar 

  12. Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    Article  CAS  Google Scholar 

  13. Parks, S. A., Carroll, C., Dobrowski, S. Z. & Allred, B. W. Human land uses reduce climate connectivity across North America. Glob. Change Biol. 26, 2944–2955 (2020).

    Article  Google Scholar 

  14. McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. Proc. Natl Acad. Sci. USA 113, 7195–7200 (2016).

    Article  CAS  Google Scholar 

  15. Watson, J. E. M., Iwamura, T. & Butt, N. Mapping vulnerability and conservation adaptation strategies under climate change. Nat. Clim. Change 3, 989–994 (2013).

    Article  Google Scholar 

  16. Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article  Google Scholar 

  17. Jones, C., Giorgi, F. & Asrar, G. The coordinated regional downscaling experiment: CORDEX–an international downscaling link to CMIP5. CLIVAR Exch. 16, 34–40 (2011).

    Google Scholar 

  18. Hurtt, G. C. et al. Harmonization of global land-use change and management for the period 850-2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).

    Article  CAS  Google Scholar 

  19. Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    Article  CAS  Google Scholar 

  20. Ordonez, A., Martinuzzi, S., Radeloff, V. C. & Williams, J. W. Combined speeds of climate and land-use change of the conterminous US until 2050. Nat. Clim. Change 4, 811–816 (2014).

    Article  Google Scholar 

  21. UN General Assembly Resolution A/RES/70/1 (UN, 2015).

  22. Harrop, S. R. ‘Living in harmony with nature’? Outcomes of the 2010 Nagoya conference of the convention on biological diversity. J. Environ. Law 23, 117–128 (2011).

    Article  Google Scholar 

  23. Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).

    Article  CAS  Google Scholar 

  24. Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).

    Article  CAS  Google Scholar 

  25. Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    Article  CAS  Google Scholar 

  26. Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 117, 19656–19657 (2020).

    Article  CAS  Google Scholar 

  27. Ando, A. W. & Mallory, M. L. Optimal portfolio design to reduce climate-related conservation uncertainty in the Prairie Pothole Region. Proc. Natl Acad. Sci. USA 109, 6484–6489 (2012).

    Article  CAS  Google Scholar 

  28. Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).

    Article  Google Scholar 

  29. Dobrowski, S. Z. & Parks, S. A. Climate change velocity underestimates climate change exposure in mountainous regions. Nat. Commun. 7, 12349 (2016).

  30. Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 175–311 (IPCC, WMO, 2018).

  31. Sandel, B. et al. The influence of late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).

    Article  CAS  Google Scholar 

  32. Ordonez, A., Williams, J. W. & Svenning, J.-C. Mapping climatic mechanisms likely to favour the emergence of novel communities. Nat. Clim. Change 6, 1104–1109 (2016).

    Article  Google Scholar 

  33. Carroll, C. et al. Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change. Glob. Change Biol. 23, 4508–4520 (2017).

    Article  Google Scholar 

  34. Alexander, J. M. et al. Lags in the response of mountain plant communities to climate change. Glob. Change Biol. 24, 563–579 (2018).

    Article  Google Scholar 

  35. Lawler, J. J. et al. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl Acad. Sci. USA 111, 7492–7497 (2014).

    Article  CAS  Google Scholar 

  36. Stein, B. A. et al. Preparing for and managing change: climate adaptation for biodiversity and ecosystems. Front. Ecol. Environ. 11, 502–510 (2013).

    Article  Google Scholar 

  37. Elsen, P. R., Monahan, W. B. & Merenlender, A. M. Global patterns of protection of elevational gradients in mountain ranges. Proc. Natl Acad. Sci. USA 115, 6004–6009 (2018).

    Article  CAS  Google Scholar 

  38. Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    Article  CAS  Google Scholar 

  39. Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).

    Article  CAS  Google Scholar 

  40. Fitzpatrick, M. C., Gove, A. D., Sanders, N. & Dunn, R. R. Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia. Glob. Change Biol. 14, 1337–1352 (2008).

    Article  Google Scholar 

  41. Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA 97, 9115–9120 (2000).

    Article  CAS  Google Scholar 

  42. Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).

    Article  CAS  Google Scholar 

  43. Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. 5, eaay9969 (2019).

    Article  Google Scholar 

  44. Osorio, F., Vallejos, R. & Cuevas, F. SpatialPack: Package for Analysis of Spatial Data. R package version 0.2-3 (2014).

  45. Williams, K. D. et al. The Met Office Global Coupled model 2.0 (GC2) configuration. Geosci. Model Dev. 8, 1509–1524 (2015).

    Article  Google Scholar 

  46. Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project Phase 5. J. Adv. Model. Earth Syst. (2013).

  47. Knudsen, E. M. & Walsh, J. E. Northern Hemisphere storminess in the Norwegian Earth System Model (NorESM1-M). Geosci. Model Dev. 9, 2335–2355 (2016).

    Article  Google Scholar 

  48. Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33, 441–457 (2018).

    Article  Google Scholar 

  49. García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an R package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).

    Article  Google Scholar 

  50. UNEP‐WCMC & IUCN Protected Planet: The World Database on Protected Areas (WDPA, 2018).

  51. Visconti, P. et al. Protected area targets post-2020. Science 364, eaav6886 (2019).

    Article  Google Scholar 

  52. Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. (2007).

  53. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).

  54. Ellis, E. C., Antill, E. C. & Kreft, H. All is not loss: plant biodiversity in the anthropocene. PLoS ONE 7, 30535 (2012).

  55. Asamoah, E. F. Climate Velocity and Land-use Instability 1971–2100 (Figshare, 2021);

Download references


We thank M. Di Marco for providing comments on an earlier version of this work. E.F.A. acknowledges PhD support from Macquarie University through the International Macquarie Research Excellence Scholarship (iMQRES) programme.

Author information

Authors and Affiliations



E.F.A. and J.M.M. conceived the study. E.F.A. performed the analysis and led the manuscript with L.J.B. and J.M.M. All authors critically edited the manuscript.

Corresponding author

Correspondence to Ernest F. Asamoah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Isabel Rosa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Global patterns of the combined climate change velocity and land-use instability.

(a–c) A bivariate choropleth of climate and land-use velocities showing two-dimensional velocity space across the globe during 1971–2000, 2021–2050 and 2071–2100 epochs. Climate velocity and land-use instability metrics were both reclassified into frequency distributions of percentile bins. Both climate and land-use change results are based on a spatial resolution of 24 km in a Mollweide projection (ESRI: 54009).

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–4, Tables 1–5 and References.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asamoah, E.F., Beaumont, L.J. & Maina, J.M. Climate and land-use changes reduce the benefits of terrestrial protected areas. Nat. Clim. Chang. 11, 1105–1110 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing