Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Threatened salmon rely on a rare life history strategy in a warming landscape

Abstract

Rare phenotypes and behaviours within a population are often overlooked, yet they may serve a heightened role for species imperilled by rapid warming. In threatened spring-run Chinook salmon spawning at the southern edge of the species range, we show late-migrating juveniles are critical to cohort success in years characterized by droughts and ocean heatwaves. Late migrants rely on cool river temperatures over summer, increasingly rare due to the combined effects of warming and impassable dams. Despite the dominance of late migrants, other strategies played an important role in many years. Our results suggest that further loss of phenotypic diversity will have critical impacts on population persistence in a warming climate. Predicted thermally suitable river conditions for late migrants will shrink rapidly in the future and will be largely relegated above impassable dams. Reconnecting diverse habitat mosaics to support phenotypic diversity will be integral to the long-term persistence of this species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spring-run Chinook salmon life history diversity.
Fig. 2: Migrant size distributions at natal and freshwater exit.
Fig. 3: Migrant sizes and life history diversity across years.
Fig. 4: Early-life salmon growth across life history types.
Fig. 5: Central Valley habitat suitability mapping under current and future climate conditions.

Similar content being viewed by others

Data availability

The datasets generated and used for the otolith strontium isotope and early-life freshwater growth analyses and to produce Figs. 14 and Supplementary Figs. 13 are available on GitHub at https://github.com/floracordoleani/MillDeerOtolithPaper (ref. 71). The stream temperature and spring-run Chinook spatial distribution shapefiles generated for the juvenile spring-run Chinook thermal habitat suitability assessment and used in Fig. 5, Extended Data Fig. 1 and Supplementary Fig. 4 are available on DRYAD at https://doi.org/10.5061/dryad.bk3j9kdc9 (ref. 72).

Code availability

The code for the otolith strontium isotope and early-life growth analyses is posted on GitHub at https://github.com/floracordoleani/MillDeerOtolithPaper.

References

  1. IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) (Cambridge Univ. Press, 2007).

  2. Kiehl, J. Lessons from Earth’s past. Science 331, 158–159 (2011).

    Article  CAS  Google Scholar 

  3. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article  Google Scholar 

  4. Davis, M. B. Range shifts and adaptive responses to quaternary climate change. Science 292, 673–679 (2001).

    Article  CAS  Google Scholar 

  5. Chen, I.-C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    Article  CAS  Google Scholar 

  6. Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).

    Article  Google Scholar 

  7. Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).

    Article  CAS  Google Scholar 

  8. Diez, J. M. et al. Forecasting phenology: from species variability to community patterns. Ecol. Lett. 15, 545–553 (2012).

    Article  Google Scholar 

  9. Aubin, I. et al. Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environ. Rev. 24, 164–186 (2016).

    Article  Google Scholar 

  10. Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: implications for understanding global change responses. Glob. Change Biol. 22, 137–150 (2016).

    Article  Google Scholar 

  11. Hilborn, R., Quinn, T. P., Schindler, D. E. & Rogers, D. E. Biocomplexity and fisheries sustainability. Proc. Natl Acad. Sci. USA 100, 6564–6568 (2003).

    Article  CAS  Google Scholar 

  12. Greene, C. M., Hall, J. E., Guilbault, K. R. & Quinn, T. P. Improved viability of populations with diverse life-history portfolios. Biol. Lett. https://doi.org/10.1098/rsbl.2009.0780 (2010).

  13. Moore, J. W., Yeakel, J. D., Peard, D., Lough, J. & Beere, M. Life-history diversity and its importance to population stability and persistence of a migratory fish: steelhead in two large North American watersheds. J. Anim. Ecol. 83, 1035–1046 (2014).

    Article  Google Scholar 

  14. Fagan, W. F. Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology 83, 3243–3249 (2002).

    Article  Google Scholar 

  15. Fausch, K. D., Torgersen, C. E., Baxter, C. V. & Li, H. W. Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. BioScience 52, 483–498 (2002).

    Article  Google Scholar 

  16. Comte, L. & Grenouillet, G. Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography 36, 1236–1246 (2013).

    Article  Google Scholar 

  17. Troia, M. J., Kaz, A. L., Niemeyer, J. C. & Giam, X. Species traits and reduced habitat suitability limit efficacy of climate change refugia in streams. Nat. Ecol. Evol. 3, 1321–1330 (2019).

    Article  Google Scholar 

  18. Beechie, T., Buhle, E., Ruckelshaus, M., Fullerton, A. & Holsinger, L. Hydrologic regime and the conservation of salmon life history diversity. Biol. Conserv. 130, 560–572 (2006).

    Article  Google Scholar 

  19. Barbarossa, V. et al. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl Acad. Sci. USA 117, 3648–3655 (2020).

    Article  CAS  Google Scholar 

  20. FitzGerald, A. M., John, S. N., Apgar, T. M., Mantua, N. J. & Martin, B. T. Quantifying thermal exposure for migratory riverine species: phenology of Chinook salmon populations predicts thermal stress. Glob. Change Biol. 27, 536–549 (2021).

    Article  Google Scholar 

  21. Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–612 (2010).

    Article  CAS  Google Scholar 

  22. Brennan, S. R. et al. Shifting habitat mosaics and fish production across river basins. Science 364, 783–786 (2019).

    Article  CAS  Google Scholar 

  23. Crozier, L. G. et al. Climate vulnerability assessment for Pacific salmon and steelhead in the California current large marine ecosystem. PLoS ONE 14, e0217711 (2019).

    Article  CAS  Google Scholar 

  24. Yoshiyama, R. M., Fisher, F. W. & Moyle, P. B. Historical abundance and decline of Chinook salmon in the Central Valley region of California. North Am. J. Fish. Manag. 18, 487–521 (1998).

    Article  Google Scholar 

  25. Gustafson, R. G. et al. Pacific salmon extinctions: quantifying lost and remaining diversity. Conserv. Biol. 21, 1009–1020 (2007).

    Article  Google Scholar 

  26. McClure, M. M. et al. Evolutionary consequences of habitat loss for Pacific anadromous salmonids: salmonid habitat loss and evolution. Evol. Appl. 1, 300–318 (2008).

    Article  Google Scholar 

  27. Quinn, T. P. The Behavior and Ecology of Pacific Salmon and Trout (Univ. Washington Press, 2018).

  28. Yoshiyama, R. M., Gerstung, E. R., Fisher, F. W. & Moyle, P. B. in Contributions to the Biology of Central Valley Salmonids (ed. Brown, R. L.) 71–176 (California Department of Fish and Game, 2001).

  29. Metcalfe, N. B. & Thorpe, J. E. Determinants of geographical variation in the age of seaward-migrating salmon, Salmo salar. J. Anim. Ecol. 59, 135–145 (1990).

    Article  Google Scholar 

  30. Moyle, P. B., Lusardi, R. A., Samuel, P. & Katz, J. State of the Salmonids: Status of California’s Emblematic Fishes 2017 (Center for Watershed Sciences, 2017); https://doi.org/10.13140/RG.2.2.24893.97761

  31. Hedgecock, D. Microsatellite DNA for the Management and Protection of California’s Central Valley Chinook Salmon (Oncorhynchus tshawytscha) Final Report for the Amendment to Agreement No. B-59638 (Univ. of California, 2002).

  32. Woodson, L. et al. Size, growth, and origin-dependent mortality of juvenile Chinook salmon Oncorhynchus tshawytscha during early ocean residence. Mar. Ecol. Prog. Ser. 487, 163–175 (2013).

    Article  Google Scholar 

  33. Satterthwaite, W. et al. Match-mismatch dynamics and the relationship between ocean-entry timing and relative ocean recoveries of Central Valley fall run Chinook salmon. Mar. Ecol. Prog. Ser. 511, 237–248 (2014).

    Article  Google Scholar 

  34. Johnson, M. R. & Merrick, K. Juvenile Salmonid Monitoring Using Rotary Screw Traps in Deer Creek and Mill Creek, Tehama County, California Summary Report: 1994–2010 RBFO Technical Report No. 04-2012 (California Department of Fish and Wildlife, 2012).

  35. Beckman, B. R., Larsen, D. A., Lee-Pawlak, B. & Dickhoff, W. W. Relation of fish size and growth rate to migration of spring Chinook salmon smolts. North Am. J. Fish. Manag. 18, 537–546 (1998).

    Article  Google Scholar 

  36. Myrick, C. A. & Cech, J. J. Temperature Effects on Chinook Salmon and Steelhead Bay-Delta Modeling Forum Technical Publication 01-1 (Bay-Delta Modeling Forum, 2001).

  37. Cogliati, K. M., Unrein, J. R., Stewart, H. A., Schreck, C. B. & Noakes, D. L. G. Egg size and emergence timing affect morphology and behavior in juvenile Chinook salmon. Oncorhynchus tshawytscha. Ecol. Evol. 8, 778–789 (2018).

    Article  Google Scholar 

  38. Richter, A. & Kolmes, S. A. Maximum temperature limits for Chinook, coho, and chum salmon, and steelhead trout in the Pacific northwest. Rev. Fish. Sci. 13, 23–49 (2005).

  39. Johnson, R. C. & Lindley, S. T. in Viability Assessment for Pacific Salmon and Steelhead Listed Under the Endangered Species Act: Southwest NOAA Technical Memorandum NMFS-SWFSC-564 (eds Williams, T. H. et al.) 48–63 (U.S. Department of Commerce, 2016).

  40. Dettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J. & Cayan, D. R. Atmospheric rivers, floods and the water resources of California. Water 3, 445–478 (2011).

    Article  Google Scholar 

  41. Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    Article  CAS  Google Scholar 

  42. Ullrich, P. A. et al. California’s drought of the future: a midcentury recreation of the exceptional conditions of 2012–2017. Earth’s Future 6, 1568–1587 (2018).

    Article  CAS  Google Scholar 

  43. Beamish, R. J. & Mahnken, C. A critical size and period hypothesis to explain natural regulation of salmon abundance and the linkage to climate and climate change. Prog. Oceanogr. 49, 423–437 (2001).

    Article  Google Scholar 

  44. Sturrock, A. M. et al. Reconstructing the migratory behavior and long-term survivorship of juvenile Chinook salmon under contrasting hydrologic regimes. PLoS ONE 10, e0122380 (2015).

    Article  CAS  Google Scholar 

  45. Michel, C. J., Notch, J. J., Cordoleani, F., Ammann, A. J. & Danner, E. M. Nonlinear survival of imperiled fish informs managed flows in a highly modified river. Ecosphere 12, e03498 (2021).

    Article  Google Scholar 

  46. Isaak, D. J., Young, M. K., Nagel, D. E., Horan, D. L. & Groce, M. C. The cold-water climate shield: delineating refugia for preserving salmonid fishes through the 21st century. Glob. Change Biol. 21, 2540–2553 (2015).

    Article  Google Scholar 

  47. Ebersole, J. L., Quiñones, R. M., Clements, S. & Letcher, B. H. Managing climate refugia for freshwater fishes under an expanding human footprint. Front. Ecol. Environ. 18, 271–280 (2020).

    Article  Google Scholar 

  48. Klemetsen, A. et al. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol. Freshw. Fish. 12, 1–59 (2003).

    Article  Google Scholar 

  49. Kovach, R. P., Gharrett, A. J. & Tallmon, D. A. Genetic change for earlier migration timing in a pink salmon population. Proc. R. Soc. B 279, 3870–3878 (2012).

    Article  Google Scholar 

  50. Miettinen, A. et al. A large wild salmon stock shows genetic and life history differentiation within, but not between, rivers. Conserv. Genet. 22, 35–51 (2021).

    Article  CAS  Google Scholar 

  51. Birnie-Gauvin, K. et al. Life-history strategies in salmonids: the role of physiology and its consequences. Biol. Rev. 96, 2304–2320 (2021).

    Article  Google Scholar 

  52. Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).

    Article  Google Scholar 

  53. Jonsson, B. & Jonsson, N. A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. J. Fish. Biol. 75, 2381–2447 (2009).

    Article  CAS  Google Scholar 

  54. Zillig, K. W., Lusardi, R. A., Moyle, P. B. & Fangue, N. A. One size does not fit all: variation in thermal eco-physiology among Pacific salmonids. Rev. Fish. Biol. Fish. 31, 95–114 (2021).

    Article  Google Scholar 

  55. Thorstad, E. B. et al. Atlantic salmon in a rapidly changing environment-facing the challenges of reduced marine survival and climate change. Aquat. Conserv. 31, 2654–2665 (2021).

    Article  Google Scholar 

  56. 5-Year Review: Summary and Evaluation of Central Valley Spring-run Chinook Salmon Evolutionarily Significant Unit (National Marine Fisheries Service, 2016); https://repository.library.noaa.gov/view/noaa/17018

  57. Barnett-Johnson, R., Grimes, C. B., Royer, C. F. & Donohoe, C. J. Identifying the contribution of wild and hatchery Chinook salmon (Oncorhynchus tshawytscha) to the ocean fishery using otolith microstructure as natural tags. Can. J. Fish. Aquat. Sci. 64, 1683–1692 (2007).

    Article  Google Scholar 

  58. Barnett-Johnson, R., Ramos, F. C., Grimes, C. B. & MacFarlane, R. B. Validation of Sr isotopes in otoliths by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICPMS): opening avenues in fisheries science applications. Can. J. Fish. Aquat. Sci. 62, 2425–2430 (2005).

    Article  CAS  Google Scholar 

  59. Barnett-Johnson, R., Pearson, T. E., Ramos, F. C., Grimes, C. B. & MacFarlane, R. B. Tracking natal origins of salmon using isotopes, otoliths, and landscape geology. Limnol. Oceanogr. 53, 1633–1642 (2008).

    Article  CAS  Google Scholar 

  60. Hobson, K. A., Barnett-Johnson, R. & Cerling, T. in Isoscapes (eds West, J. B. et al.) 273–298 (Springer, 2010).

  61. Ingram, B. L. & Weber, P. K. Salmon origin in California’s Sacramento–San Joaquin river system as determined by otolith strontium isotopic composition. Geology 27, 851–854 (1999).

    Article  Google Scholar 

  62. Phillis, C. C., Sturrock, A. M., Johnson, R. C. & Weber, P. K. Endangered winter-run Chinook salmon rely on diverse rearing habitats in a highly altered landscape. Biol. Conserv. 217, 358–362 (2018).

    Article  Google Scholar 

  63. Fielding, A. Cluster and Classification Techniques for the Biosciences (Cambridge Univ. Press, 2007).

  64. Ramsay, J. & Silverman, B. W. Functional Data Analysis (Springer-Verlag, 1997).

  65. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  66. Fraley, C. & Raftery, A. E. Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97, 611–631 (2002).

    Article  Google Scholar 

  67. Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. R J. 8, 289–317 (2016).

    Article  Google Scholar 

  68. Schick, R. S., Edsall, A. L. & Lindley, S. T. Historical and Current Distribution of Pacific Salmonids in the Central Valley, CA NOAA-TM-NMFS-SWFSC-369 (NOAA-NMFS, 2005).

  69. Isaak, D. J. et al. The NorWeST summer stream temperature model and scenarios for the western U.S.: a crowd-sourced database and new geospatial tools foster a user community and predict broad climate warming of rivers and streams. Water Resour. Res. 53, 9181–9205 (2017).

    Article  Google Scholar 

  70. Bjornn, T. C. & Reiser, D. W. in Influences of Forest and Rangeland Management on Salmonid Fishes and Their Habitats Special Publication 19 (ed. Meehan, W. R.) 83–138 (American Fisheries Society, 1991).

  71. Cordoleani, F. et al. Threatened salmon rely on a rare life history strategy in a warming landscape. Github https://github.com/floracordoleani/MillDeerOtolithPaper (2021).

  72. Cordoleani, F. et al. Threatened salmon rely on a rare life history strategy in a warming landscape. Dryad Digital Repository https://doi.org/10.5061/dryad.bk3j9kdc9 (2021).

Download references

Acknowledgements

We thank C. Harvey-Arrison and M. Johnson, California Department of Fish and Wildlife (CDFW), for providing Mill and Deer Creek otoliths and rotary screw trap data used in this study. The funding for the otolith collection came from the CalFed, Sport Fish Restoration Act and Bureau of Reclamation. The use of spring-run Chinook Salmon otoliths followed the protocol approved by the University of California Santa Cruz’s Institutional Animal Care and Use Committee. We also thank N. Mantua from the Southwest Fisheries Science Center, Santa Cruz for valuable comments and suggestions. Funding for otoliths analysis was provided to P.K.W. and C.C.P. by CalFed, project no. SCI-05-C179, and to F.C. by CA Sea Grant, award no. 82550-447552, with Metropolitan Water District providing matching funds through salary contribution to C.C.P. Additional labour funding for the data analysis was contributed to F.C. by the US Bureau of Reclamation Central Valley spring-run life cycle modelling project, agreement no. R12PG20200, and National Oceanic and Atmospheric Administration (NOAA) Investigations in Fisheries Ecology, award no. NA150AR4320071. CDFW (Water Quality, Supply and Infrastructure Improvement Act of 2014 (CWC §79707(g))) supported co-author A.M.S. NOAA fisheries provided matching funds through salary contribution of co-author R.C.J. P.K.W. received additional support from a University of California Berkeley, Department of Geography, Etta Odgen Holway Scholarship. Work at Lawrence Livermore National Laboratory was performed under the auspices of the US Department of Energy under contract no. DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Contributions

F.C., C.C.P., P.K.W., A.M.S. and R.C.J. conceived the study. F.C. led data collection and analyses. F.C., C.C.P., A.M.S., A.M.F., P.K.W., A.M. and R.C.J. contributed to data analyses and manuscript writing. G.E.W., C.C.P. and P.K.W. conducted the otolith microchemistry and microstructure analyses. A.M.F. performed the temperature prediction modelling and A.M. performed the clustering analysis.

Corresponding author

Correspondence to F. Cordoleani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Rebecca Buchanan, Daniel Schindler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Central Valley habitat suitability mapping under a climate change scenario for 2040.

Details of this figure are identical to Fig. 5, except displayed for 0.6 °C stream temperature increase.

Supplementary information

Supplementary Information

Supplementary Discussion, Tables 1–3 and Figs. 1–3.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordoleani, F., Phillis, C.C., Sturrock, A.M. et al. Threatened salmon rely on a rare life history strategy in a warming landscape. Nat. Clim. Chang. 11, 982–988 (2021). https://doi.org/10.1038/s41558-021-01186-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-021-01186-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing