Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Uncertain storage prospects create a conundrum for carbon capture and storage ambitions

Abstract

Grand hopes exist that carbon capture and storage can have a major decarbonization role at global, regional and sectoral scales. Those hopes rest on the narrative that an abundance of geological storage opportunity is available to meet all needs. In this Perspective, we present the contrasting view that deep uncertainty over the sustainable injection rate at any given location will constrain the pace and scale of carbon capture and storage deployment. Although such constraints will probably have implications in most world regions, they may be particularly relevant in major developing Asian economies. To minimize the risk that these constraints pose to the decarbonization imperative, we discuss steps that are urgently needed to evaluate, plan for and reduce the uncertainty over CO2 storage prospects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of CCS implementation in 20 modelled simulations compatible with the Paris Agreement 2 °C target.
Fig. 2: Using O&G production data to critique the relative prospects of meeting the regional CCS targets implied in the 2 °C scenario of the IEA’s ETP2017 study27.

Similar content being viewed by others

References

  1. Rogelj, J., McCollum, D. L., Reisinger, A., Meinshausen, M. & Riahi, K. Probabilistic cost estimates for climate change mitigation. Nature 493, 79–83 (2013).

    Article  CAS  Google Scholar 

  2. Davidson, C. L. et al. The value of CCS under current policy scenarios: NDCs and beyond. Energy Proc. 114, 7521–7527 (2017).

  3. Vinca, A., Rottoli, M., Marangoni, G. & Tavoni, M. The role of carbon capture and storage electricity in attaining 1.5 and 2 °C. Int. J. Greenh. Gas Control 78, 148–159 (2018).

    Article  Google Scholar 

  4. Exploring Clean Energy Pathways: The Role of CO2 Storage (IEA, 2019).

  5. Luderer, G. et al. Residual fossil CO2 emissions in 1.5–2 °C pathways. Nat. Clim. Change 8, 626–633 (2018).

    Article  CAS  Google Scholar 

  6. Gambhir, A., Rogelj, J., Luderer, G., Few, S. & Napp, T. Energy system changes in 1.5 °C, well below 2 °C and 2 °C scenarios. Energy Strateg. Rev. 23, 69–80 (2019).

    Article  Google Scholar 

  7. Kriegler, E. et al. Short term policies to keep the door open for Paris climate goals. Environ. Res. Lett. 13, 074022 (2018).

    Article  CAS  Google Scholar 

  8. Minx, J. C. et al. Negative emissions—part 1: research landscape and synthesis. Environ. Res. Lett. 13, 063001 (2018).

    Article  Google Scholar 

  9. Hilaire, J. et al. Negative emissions and international climate goals—learning from and about mitigation scenarios. Clim. Change https://doi.org/10.1007/s10584-019-02516-4 (2019).

  10. Liu, P. R. & Raftery, A. E. Country-based rate of emissions reductions should increase by 80% beyond nationally determined contributions to meet the 2 °C target. Commun. Earth Environ. 2, 29 (2021).

    Article  Google Scholar 

  11. Larkin, A., Kuriakose, J., Sharmina, M. & Anderson, K. What if negative emission technologies fail at scale? Implications of the Paris Agreement for big emitting nations. Clim. Policy 18, 690–714 (2018).

    Article  Google Scholar 

  12. Marcucci, A., Panos, E., Kypreos, S. & Fragkos, P. Probabilistic assessment of realizing the 1.5 °C climate target. Appl. Energy 239, 239–251 (2019).

    Article  Google Scholar 

  13. Holz, C., Siegel, L. S., Johnston, E., Jones, A. P. & Sterman, J. Ratcheting ambition to limit warming to 1.5 °C-trade-offs between emission reductions and carbon dioxide removal. Environ. Res. Lett. 13, 064028 (2018).

    Article  CAS  Google Scholar 

  14. Benveniste, H., Boucher, O., Guivarch, C., Le Treut, H. & Criqui, P. Impacts of nationally determined contributions on 2030 global greenhouse gas emissions: uncertainty analysis and distribution of emissions. Environ. Res. Lett. 13, 014022 (2018).

    Article  CAS  Google Scholar 

  15. Reiner, D. M. Learning through a portfolio of carbon capture and storage demonstration projects. Nat. Energy 1, 15011 (2016).

    Article  Google Scholar 

  16. Langhelle, O. & Meadowcroft, J. in Caching the Carbon: The Politics and Policy of Carbon Capture and Storage (eds Meadowcroft, J. & Langhelle, O.) 236–266 (Edward Elgar Publishing, 2009).

  17. Lipponen, J. et al. The politics of large-scale CCS deployment. In Proc. 13th International Conference on Greenhouse Gas Control Technologies (eds Dixon, T. et al.) Vol. 114, 7581–7595 (Elsevier Science, 2017).

  18. Andreas, J.-J., Serdoner, A. & Whiriskey, K. An Industry’s Guide to Climate Action (The Bellona Foundation, 2018); https://network.bellona.org/content/uploads/sites/3/2018/11/Industry-Report-final.pdf

  19. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda (The National Academies Press, 2019).

  20. Lomax, G., Lenton, T. M., Adeosun, A. & Workman, M. Investing in negative emissions. Nat. Clim. Change 5, 498–500 (2015).

    Article  Google Scholar 

  21. van Vuuren, D. P., Hof, A. F., van Sluisveld, M. A. E. & Riahi, K. Open discussion of negative emissions is urgently needed. Nat. Energy 2, 902–904 (2017).

    Article  Google Scholar 

  22. Realmonte, G. et al. An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nat. Commun. 10, 3277 (2019).

    Article  CAS  Google Scholar 

  23. Vaughan, N. E. et al. Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios. Environ. Res. Lett. 13, 044014 (2018).

    Article  CAS  Google Scholar 

  24. Arranz, A. M. Hype among low-carbon technologies: carbon capture and storage in comparison. Glob. Environ. Change 41, 124–141 (2016).

    Article  Google Scholar 

  25. World Energy Investment 2018 (IEA, 2018); https://doi.org/10.1787/9789264301351-en

  26. Haszeldine, R. S., Flude, S., Johnson, G. & Scott, V. Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments. Philos. Trans. R. Soc. A 376, 20160447 (2018).

    Article  CAS  Google Scholar 

  27. Energy Technology Perspectives 2017 (IEA, 2017); https://www.iea.org/reports/energy-technology-perspectives-2017

  28. Viebahn, P. & Chappin, E. J. L. Scrutinising the gap between the expected and actual deployment of carbon capture and storage—a bibliometric analysis. Energies 11, 2319 (2018).

    Article  Google Scholar 

  29. Li, J., Hou, Y., Wang, P. & Yang, B. A review of carbon capture and storage project investment and operational decision-making based on bibliometrics. Energies 12, 23 (2019).

    Article  CAS  Google Scholar 

  30. Romasheva, N. & Ilinova, A. CCS projects: how regulatory framework influences their deployment. Resources 8, 181 (2019).

    Article  Google Scholar 

  31. Li, H., Jiang, H.-D., Yang, B. & Liao, H. An analysis of research hotspots and modeling techniques on carbon capture and storage. Sci. Total Environ. 687, 687–701 (2019).

    Article  CAS  Google Scholar 

  32. Qiu, H.-H. & Liu, L.-G. A study on the evolution of carbon capture and storage technology based on knowledge mapping. Energies 11, 1103 (2018).

    Article  Google Scholar 

  33. Stephens, J. C. Time to stop investing in carbon capture and storage and reduce government subsidies of fossil-fuels. Wiley Interdiscip. Rev. Clim. Change 5, 169–173 (2014).

    Article  Google Scholar 

  34. Corry, O. & Riesch, H. in The Social Dynamics of Carbon Capture and Storage: Understanding CCS Representations, Governance and Innovation (eds Markusson, N. et al.) 91–108 (Routledge, 2012).

  35. Ulterino, M. CCS: sitting on the wrong side of innovation. Energy Environ. 23, 419–424 (2012).

    Article  Google Scholar 

  36. Dooley, J. J. Valuing national and basin level geologic CO2 storage capacity assessments in a broader context. Int. J. Greenh. Gas Control 5, 177–178 (2011).

    Article  Google Scholar 

  37. Consoli, C. P. & Wildgust, N. Current status of global storage resources. In Proc. 13th International Conference on Greenhouse Gas Control Technologies (eds Dixon, T. et al.) Vol. 114, 4623–4628 (Elsevier Science, 2017).

  38. Technology Roadmap: Carbon Capture and Storage (IEA, 2009).

  39. Prospects for Carbon Capture and Storage in Southeast Asia (ADB, 2013).

  40. Goodman, A. et al. Comparison of methods for geologic storage of carbon dioxide in saline formations. Int. J. Greenh. Gas Control 18, 329–342 (2013).

    Article  CAS  Google Scholar 

  41. Viebahn, P., Vallentin, D. & Hoeller, S. Prospects of carbon capture and storage (CCS) in India’s power sector—an integrated assessment. Appl. Energy 117, 62–75 (2014).

    Article  Google Scholar 

  42. Benson, S. M. et al. in Global Energy Assessment—Toward a Sustainable Future (ed. GEA Writing Team) 993–1068 (Cambridge Univ. Press, 2012).

  43. IPCC Special Report on Carbon Dioxide Capture and Storage (Cambridge Univ. Press, 2005).

  44. Fuss, S. et al. Negative emissions—part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).

    Article  CAS  Google Scholar 

  45. Bachu, S. Review of CO2 storage efficiency in deep saline aquifers. Int. J. Greenh. Gas Control 40, 188–202 (2015).

    Article  CAS  Google Scholar 

  46. Pickup, G. E. in Geological Storage of Carbon Dioxide (CO2) (eds Gluyas, J. & Mathias, S.) 26–44 (Woodhead Publishing, 2013).

  47. Dooley, J. J. Estimating the supply and demand for deep geologic CO2 storage capacity over the course of the 21st century: a meta-analysis of the literature. Energy Proc. 37, 5141–5150 (2013).

  48. Kearns, J. et al. Developing a consistent database for regional geologic CO2 storage capacity worldwide. Energy Proc. 114, 4697–4709 (2017).

    Article  CAS  Google Scholar 

  49. Haszeldine, R. S. Carbon capture and storage: how green can black be? Science 325, 1647–1652 (2009).

    Article  CAS  Google Scholar 

  50. Allinson, W. G., Cinar, Y., Neal, P. R., Kaldi, J. & Paterson, L. CO2 storage capacity—combining geology, engineering and economics. In Proc. SPE Asia Pacific Oil & Gas Conference and Exhibition Paper Number SPE-133804-PA (Society of Petroleum Engineers, 2014); https://doi.org/10.2118/133804-PA

  51. Garnett, A. J., Greig, C. R. & Oettinger, M. ZeroGen IGCC with CCS—A Case History (Univ. Queensland, 2014).

  52. Thibeau, S. & Mucha, V. Have we overestimated saline aquifer CO2 storage capacities? Oil Gas Sci. Technol. 66, 81–92 (2011).

    Article  CAS  Google Scholar 

  53. The Global Status of CCS 2020 (GCCSI, 2020).

  54. UK Among World Leaders in Global Energy Revolution (Drax Group, 2018); https://www.drax.com/press_release/uk-among-world-leaders-global-energy-revolution/

  55. Asayama, S. & Ishii, A. Selling stories of techno-optimism? The role of narratives on discursive construction of carbon capture and storage in the Japanese media. Energy Res. Soc. Sci. 31, 50–59 (2017).

    Article  Google Scholar 

  56. de Pee, A. et al. Decarbonization of Industrial Sectors: The Next Frontier (McKinsey & Company, 2018).

  57. Roadmap for Carbon Capture and Storage Demonstration and Deployment in the People’s Republic of China (ADB, 2015).

  58. Corless, V. et al. Insuring Energy Independence—A CCS Roadmap for Poland (The Bellona Foundation, 2011); https://bellona.org/publication/insuring-energy-independance-a-ccs-roadmap-for-poland

  59. Schrag, D. P. Preparing to capture carbon. Science 315, 812–813 (2007).

    Article  CAS  Google Scholar 

  60. Staffell, I., Jansen, M., Chase, A., Cotton, E. & Lewis, C. Energy Revolution: A Global Outlook (Drax Group, 2018); https://www.drax.com/energy-policy/energy-revolution-global-outlook/

  61. Consoli, C. CCS Storage Indicator (CCS-SI) (GCCSI, 2018); https://www.globalccsinstitute.com/resources/publications-reports-research/ccs-storage-indicator-ccs-si/

  62. Tavoni, M. & Socolow, R. Modeling meets science and technology: an introduction to a special issue on negative emissions. Clim. Change 118, 1–14 (2013).

    Article  Google Scholar 

  63. Koelbl, B. S., van den Broek, M. A., Faaij, A. P. C. & van Vuuren, D. P. Uncertainty in carbon capture and storage (CCS) deployment projections: a cross-model comparison exercise. Clim. Change 123, 461–476 (2014).

    Article  CAS  Google Scholar 

  64. Mac Dowell, N., Fennell, P. S., Shah, N. & Maitland, G. C. The role of CO2 capture and utilization in mitigating climate change. Nat. Clim. Change 7, 243–249 (2017).

    Article  CAS  Google Scholar 

  65. Wei, N. et al. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO2 storage in China. Int. J. Greenh. Gas Control 12, 231–246 (2013).

    Article  CAS  Google Scholar 

  66. Grataloup, S. et al. A site selection methodology for CO2 underground storage in deep saline aquifers: case of the Paris Basin. Energy Proc. 1, 2929–2936 (2009).

  67. Chadwick, R. A., Noy, D. J. & Holloway, S. Flow processes and pressure evolution in aquifers during the injection of supercritical CO2 as a greenhouse gas mitigation measure. Petrol. Geosci. 15, 59–73 (2009).

    Article  CAS  Google Scholar 

  68. Teletzke, G. F. et al. Evaluation of practicable subsurface CO2 storage capacity and potential CO2 transportation networks, onshore North America. In Proc. 14th Greenhouse Gas Control Technologies Conference (IEAGHG, 2018); https://doi.org/10.2139/ssrn.3366176

  69. Aminu, M. D., Nabavi, S. A., Rochelle, C. A. & Manovic, V. A review of developments in carbon dioxide storage. Appl. Energy 208, 1389–1419 (2017).

    Article  CAS  Google Scholar 

  70. Agada, S. et al. Sensitivity analysis of the dynamic CO2 storage capacity estimate for the Bunter Sandstone of the UK southern North Sea. Energy Proc. 114, 4564–4570 (2017).

    Article  CAS  Google Scholar 

  71. Mackay, E. J. in Geological Storage of Carbon Dioxide (CO2)—Geoscience, Technologies, Environmental Aspects and Legal Frameworks (eds Gluyas, J. & Mathias, S.) 45–70 (Woodhead Publishing, 2013).

  72. Goater, A. L., Bijeljic, B. & Blunt, M. J. Dipping open aquifers—the effect of top-surface topography and heterogeneity on CO2 storage efficiency. Int. J. Greenh. Gas Control 17, 318–331 (2013).

    Article  CAS  Google Scholar 

  73. Thibeau, S. et al. Using pressure and volumetric approaches to estimate CO2 storage capacity in deep saline aquifers. In Proc 12th International Conference on Greenhouse Gas Control Technologies (eds Dixon, T. et al.) Vol. 63, 5294–5304 (Elsevier Science, 2014).

  74. CO2 Storage Efficiency in Deep Saline Formations—Stage 2 (IEAGHG, 2018).

  75. Szulczewski, M. L., MacMinn, C. W., Herzog, H. J. & Juanes, R. Lifetime of carbon capture and storage as a climate-change mitigation technology. Proc. Natl Acad. Sci. USA 109, 5185–5189 (2012).

    Article  CAS  Google Scholar 

  76. Ringrose, P. S. et al. The In Salah CO2 storage project: lessons learned and knowledge transfer. In Proc. 11th International Conference on Greenhouse Gas Control Technologies (eds Dixon, T. & Yamaji, K.) Vol. 37, 6226–6236 (Elsevier Science, 2013).

  77. Hansen, O. et al. Snohvit: the history of injecting and storing 1 Mt CO2 in the fluvial Tubaen Fm. In Proc. 11th International Conference on Greenhouse Gas Control Technologies, GHGT-11 (eds Dixon, T. & Yamaji, K.) Vol. 37, 3565–3573 (Elsevier Science, 2013).

  78. Garnett, A. Literature Review on Capacity Methods, Storage Efficiency, Factors Affecting Injection Rate Decline and Underlying Mathematics—The University of Queensland Surat Deep Aquifer Appriasal Project—Supplementary Detailed Report (Univ. Queensland, 2019).

  79. Birkholzer, J. T., Oldenburg, C. M. & Zhou, Q. CO2 migration and pressure evolution in deep saline aquifers. Int. J. Greenh. Gas Control 40, 203–220 (2015).

    Article  CAS  Google Scholar 

  80. Szulczewski, M. L., MacMinn, C. W. & Juanes, R. Theoretical analysis of how pressure buildup and CO2 migration can both constrain storage capacity in deep saline aquifers. Int. J. Greenh. Gas Control 23, 113–118 (2014).

    Article  CAS  Google Scholar 

  81. Harding, F. C., James, A. T. & Robertson, H. E. The engineering challenges of CO2 storage. Proc. Inst. Mech. Eng. A 232, 17–26 (2018).

    Article  CAS  Google Scholar 

  82. Ringrose, P. S. & Meckel, T. A. Maturing global CO2 storage resources on offshore continental margins to achieve 2DS emissions reductions. Sci. Rep. 9, 17944 (2019).

    Article  CAS  Google Scholar 

  83. Bosshart, N. W. et al. Quantifying the effects of depositional environment on deep saline formation CO2 storage efficiency and rate. Int. J. Greenh. Gas Control 69, 8–19 (2018).

    Article  CAS  Google Scholar 

  84. Tian, L., Yang, Z., Fagerlund, F. & Niemi, A. Effects of permeability heterogeneity on CO2 injectivity and storage efficiency coefficient. Greenh. Gases 6, 112–124 (2016).

    Article  CAS  Google Scholar 

  85. Hortle, A., Michael, K. & Azizi, E. Assessment of CO2 storage capacity and injectivity in saline aquifers—comparison of results from numerical flow simulations, analytical and generic models. In Proc. 12th International Conference on Greenhouse Gas Control Technologies (eds Dixon, T. et al.) Vol. 63, 3544–3562 (Elsevier Science, 2014).

  86. La Croix, A. D. et al. Reservoir modelling notional CO2 injection into the Precipice Sandstone and Evergreen Formation in the Surat Basin, Australia. Petrol. Geosci. 26, 127–140 (2020).

    Article  CAS  Google Scholar 

  87. Allen, R., Nilsen, H. M., Lie, K.-A., Moyner, O. & Andersen, O. Using simplified methods to explore the impact of parameter uncertainty on CO2 storage estimates with application to the Norwegian Continental Shelf. Int. J. Greenh. Gas Control 75, 198–213 (2018).

    Article  CAS  Google Scholar 

  88. Bui, M. et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176 (2018).

    Article  CAS  Google Scholar 

  89. Laherrere, J. Distribution and Evolution of ‘Recovery Factor’ (International Energy Agency, 1997).

  90. Hook, M., Davidsson, S., Johansson, S. & Tang, X. Decline and depletion rates of oil production: a comprehensive investigation. Philos. Trans. R. Soc. A 372, 20120448 (2014).

    Article  Google Scholar 

  91. Sorrell, S., Speirs, J., Bentley, R., Miller, R. & Thompson, E. Shaping the global oil peak: a review of the evidence on field sizes, reserve growth, decline rates and depletion rates. Energy 37, 709–724 (2012).

    Article  Google Scholar 

  92. Braunreiter, L. & Bennett, S. J. The neglected importance of corporate perceptions and positions for the long-term development of CCS. In Proc. 13th International Conference on Greenhouse Gas Control Technologies (eds Dixon, T. et al.) Vol. 114, 7197–7204 (Elsevier Science, 2017).

  93. Berly, T. & Garnett, A. Scaling up CO2 transport and storage infrastructure. In Proc. 14th Greenhouse Gas Control Technologies Conference (IEAGHG, 2018); https://doi.org/10.2139/ssrn.3366352

  94. D01: UK CO2 Storage Site Screening and Selection Methodology (PBD and AWT, 2015); https://www.eti.co.uk/programmes/carbon-capture-storage/strategic-uk-ccs-storage-appraisal

  95. de Coninck, H. & Benson, S. M. Carbon dioxide capture and storage: issues and prospects. Ann. Rev. Environ. Resour. 39, 243–270 (2014).

  96. Herzog, H. Lessons Learned from CCS Demonstration and Large Pilot Projects (MIT, 2016); https://sequestration.mit.edu/bibliography/CCS%20Demos.pdf

  97. Rassool, D., Consoli, C., Townsend, A. & Liu, H. Overview of Organisations and Policies Supporting the Deployment of Large-Scale CCS Facilities (GCCSI, 2020); https://www.globalccsinstitute.com/wp-content/uploads/2020/07/Overview-of-Organisations-and-Policies-Supporting-the-Deployement-of-Large-Scale-CCS-Facilities-2.pdf

  98. Dooley, J. J. & Calvin, K. V. Temporal and spatial deployment of carbon dioxide capture and storage technologies across the representative concentration pathways. In Proc. 10th International Conference on Greenhouse Gas Control Technologies (eds Gale, J. et al.) Vol. 4, 5845–5852 (Elsevier Science, 2011).

  99. Selosse, S. & Ricci, O. Carbon capture and storage: lessons from a storage potential and localization analysis. Appl. Energy 188, 32–44 (2017).

    Article  CAS  Google Scholar 

  100. Bataille, C. G. F. Physical and policy pathways to net-zero emissions industry. Wiley Interdiscip. Rev. Clim. Change 11, e633 (2020).

    Article  Google Scholar 

  101. Transforming Industry Through CCUS (IEA, 2019).

  102. Ready for Retrofit—The Potential for Equipping China’s Existing Coal Fleet with Carbon Capture and Storage (IEA, 2016).

  103. Cui, R. Y. et al. Quantifying operational lifetimes for coal power plants under the Paris goals. Nat. Commun. 10, 4759 (2019).

    Article  CAS  Google Scholar 

  104. Global Material Resources Outlook to 2060: Economic Drivers and Environmental Consequences (OECD, 2019); https://doi.org/10.1787/9789264307452-en

  105. CCS 2014—What Lies in Store for CCS? (IEA, 2014).

  106. Havercroft, I. & Consoli, C. The Carbon Capture and Storage Readiness Index 2018—Is the World Ready for Carbon Capture and Storage? (GCCSI, 2018); https://www.globalccsinstitute.com/resources/publications-reports-research/the-carbon-capture-and-storage-readiness-index-2018-is-the-world-ready-for-carbon-capture-and-storage/

  107. Meeting the Dual Challenge—A Roadmap to At-Scale Deployment of Carbon Capture, Use and Storage (NPC, 2019); https://dualchallenge.npc.org/

  108. The Global Status of CCS 2019 (GCCSI, 2019).

  109. Global Storage Resource Assessment—2019 Update (PBD, 2020).

  110. Sun, L., Dou, H., Li, Z., Hu, Y. & Hao, X. Assessment of CO2 storage potential and carbon capture, utilization and storage prospect in China. J. Energy Inst. 91, 970–977 (2018).

    Article  CAS  Google Scholar 

  111. Jiang, K. et al. China’s carbon capture, utilization and storage (CCUS) policy: a critical review. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2019.109601 (2019).

  112. India 2020 Energy Policy Review (IEA, 2020).

  113. Roman, M. Carbon capture and storage in developing countries: a comparison of Brazil, South Africa and India. Glob. Environ. Change 21, 391–401 (2011).

    Article  Google Scholar 

  114. Larkin, P. et al. Uncertainty in risk issues for carbon capture and geological storage: findings from a structured expert elicitation. Int. J. Risk Assess. Manage. 22, 429–463 (2019).

    Article  Google Scholar 

  115. Verdon, J. P. & Stork, A. L. Carbon capture and storage, geomechanics and induced seismic activity. J. Rock Mech. Geotech. Eng. 8, 928–935 (2016).

    Article  Google Scholar 

  116. Celia, M. A., Bachu, S., Nordbotten, J. M. & Bandilla, K. W. Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations. Water Resour. Res. 51, 6846–6892 (2015).

    Article  CAS  Google Scholar 

  117. Pawar, R. J. et al. Recent advances in risk assessment and risk management of geologic CO2 storage. Int. J. Greenh. Gas Control 40, 292–311 (2015).

    Article  CAS  Google Scholar 

  118. Meadowcroft, J. & Langhelle, O. in Caching the Carbon: The Politics and Policy of Carbon Capture and Storage (eds Meadowcroft, J. & Langhelle, O.) 267–296 (Edward Elgar Publishing, 2009).

  119. Vilarrasa, V., Carrera, J., Olivella, S., Rutqvist, J. & Laloui, L. Induced seismicity in geologic carbon storage. Solid Earth 10, 871–892 (2019).

    Article  Google Scholar 

  120. Alcalde, J. et al. Estimating geological CO2 storage security to deliver on climate mitigation. Nat. Commun. 9, 2201 (2018).

    Article  CAS  Google Scholar 

  121. Celia, M. A. Geological storage of captured carbon dioxide as a large-scale carbon mitigation option. Water Resour. Res. 53, 3527–3533 (2017).

    Article  CAS  Google Scholar 

  122. Whitmarsh, L., Xenias, D. & Jones, C. R. Framing effects on public support for carbon capture and storage. Palgr. Commun. 5, 17 (2019).

    Article  Google Scholar 

  123. Tcvetkov, P., Cherepovitsyn, A. & Fedoseev, S. Public perception of carbon capture and storage: a state-of-the-art overview. Heliyon 5, e02845 (2019).

    Article  Google Scholar 

  124. Seigo, S. L., Dohle, S. & Siegrist, M. Public perception of carbon capture and storage (CCS): a review. Renew. Sust. Energy Rev. 38, 848–863 (2014).

    Article  Google Scholar 

  125. Larkin, P., Bird, S. & Gattinger, M. Carbon Capture, Utilization and Storage—Polarization, Public Confidence and Decision-Making (Univ. Ottawa, 2021).

  126. The Potential for Reducing the Costs of CCS in the UK (DECC, 2013); https://www.gov.uk/government/publications/ccs-cost-reduction-task-force-final-report

  127. Rubin, E. S., Mantripragada, H., Marks, A., Versteeg, P. & Kitchin, J. The outlook for improved carbon capture technology. Prog. Energy Combust. Sci. 38, 630–671 (2012).

    Article  CAS  Google Scholar 

  128. Rubin, E. S. Improving cost estimates for advanced low-carbon power plants. Int. J. Greenh. Gas Control 88, 1–9 (2019).

    Article  Google Scholar 

  129. Glynn, J. et al. CCS in Energy and Climate Scenarios Report Number 2019/05 (IEAGHG, 2019).

  130. Heuberger, C. F., Staffell, I., Shah, N. & Mac Dowell, N. Quantifying the value of CCS for the future electricity system. Energy Environ. Sci. 9, 2497–2510 (2016).

    Article  CAS  Google Scholar 

  131. Daggash, H. A., Heuberger, C. F. & Mac Dowell, N. The role and value of negative emissions technologies in decarbonising the UK energy system. Int. J. Greenh. Gas Control 81, 181–198 (2019).

    Article  CAS  Google Scholar 

  132. Zapantis, A., Townsend, A. & Rassool, D. Policy Priorities to Incentivise Large Scale Deployment of CCS (GCCSI, 2019); https://www.globalccsinstitute.com/wp-content/uploads/2019/04/TL-Report-Policy-prorities-to-incentivise-the-large-scale-deployment-of-CCS-digitalfinal.pdf

  133. Havercroft, I. Lessons and Perceptions: Adopting a Commercial Approach to CCS Liability (GCCSI, 2019).

  134. Weber, V. Uncertain liability and stagnating CCS deployment in the European Union: is it the Member States’ turn? Rev. Eur. Comp. Int. Environ. Law 27, 153–161 (2018).

    Article  Google Scholar 

  135. Enabling the Deployment of Industrial CCS Clusters (IEAGHG, 2018).

  136. Fast Track CO2 Transport and Storage for Europe (ZEP, 2017).

  137. Greig, C., Baird, J. & Zervos, T. Financial Incentives for the Acceleration of CCS Projects (Univ. Queensland, 2016).

  138. Middleton, R. S. & Yaw, S. The cost of getting CCS wrong: uncertainty, infrastructure design, and stranded CO2. Int. J. Greenh. Gas Control 70, 1–11 (2018).

    Article  Google Scholar 

  139. Middleton, R. S., Keating, G. N., Viswanathan, H. S., Stauffer, P. H. & Pawar, R. J. Effects of geologic reservoir uncertainty on CO2 transport and storage infrastructure. Int. J. Greenh. Gas Control 8, 132–142 (2012).

    Article  CAS  Google Scholar 

  140. Lohwasser, R. & Madlener, R. Relating R&D and investment policies to CCS market diffusion through two-factor learning. Energy Policy 52, 439–452 (2013).

    Article  Google Scholar 

  141. Godec, M. & Williamson, B. Potential for CO2 storage cost reductions with greater commercial deployment. In Proc. 14th International Conference on Greenhouse Gas Control Technologies (IEAGHG, 2018).

  142. Greig, C., Garnett, A., Oesch, J. & Smart, S. Guidelines for Scoping & Estimating Early Mover CCS Projects (Univ. Queensland, 2014); http://anlecrd.com.au/projects/guidelines-for-scoping-estimating-early-mover-ccs-projects/

  143. Flyvbjerg, B. (ed.) in The Oxford Handbook of Megaproject Management Introduction (Oxford Univ. Press, 2017); https://doi.org/10.1093/oxfordhb/9780198732242.013.1

  144. Fouquet, R. Path dependence in energy systems and economic development. Nat. Energy 1, 16098 (2016).

    Article  Google Scholar 

  145. Merrow, E. W. Industrial Megaprojects: Concepts, Strategies, and Practices for Success (John Wiley & Sons, 2011).

  146. Songhurst, B. LNG Plant Cost Escalation (Oxford Institute for Energy Studies, 2014); https://doi.org/10.26889/9781907555947

  147. Rubin, E. S., Davison, J. E. & Herzog, H. J. The cost of CO2 capture and storage. Int. J. Greenh. Gas Control 40, 378–400 (2015).

    Article  CAS  Google Scholar 

  148. Budinis, S., Krevor, S., Mac Dowell, N., Brandon, N. & Hawkes, A. An assessment of CCS costs, barriers and potential. Energy Strategy Rev. 22, 61–81 (2018).

    Article  Google Scholar 

  149. Xenias, D. & Whitmarsh, L. Carbon capture and storage (CCS) experts’ attitudes to and experience with public engagement. Int. J. Greenh. Gas Control 78, 103–116 (2018).

    Article  Google Scholar 

  150. Fridahl, M. & Lehtveer, M. Bioenergy with carbon capture and storage (BECCS): global potential, investment preferences, and deployment barriers. Energy Res. Soc. Sci. 42, 155–165 (2018).

    Article  Google Scholar 

  151. Rickels, W., Merk, C., Reith, F., Keller, D. P. & Oschlies, A. Misconceptions about modeling of negative emissions technologies. Environ. Res. Lett. 14, 104004 (2019).

  152. Stavrakas, V., Spyridaki, N.-A. & Flamos, A. Striving towards the deployment of bio-energy with carbon capture and storage (BECCS): a review of research priorities and assessment needs. Sustainability 10, 2206 (2018).

    Article  CAS  Google Scholar 

  153. Markusson, N. et al. A socio-technical framework for assessing the viability of carbon capture and storage technology. Technol. Forecast. Soc. Change 79, 903–918 (2012).

    Article  Google Scholar 

  154. Prospective Evaluation of Applied Energy Research and Development at DOE (Phase Two) (NRC, 2007); https://doi.org/10.17226/11806

  155. Larson, E. et al. Net-Zero America by 2050: Potential Pathways, Deployments and Impacts (Princeton Univ., 2020).

  156. Shackley, S. & Markusson, N. in The Social Dynamics of Carbon Capture and Storage (eds Markusson, N. et al.) 57–68 (Routledge, 2012); https://doi.org/10.4324/9780203118726-13

  157. Hansson, A. & Bryngelsson, M. Expert opinions on carbon dioxide capture and storage—a framing of uncertainties and possibilities. Energy Policy 37, 2273–2282 (2009).

    Article  Google Scholar 

  158. Arranz, A. M. Carbon capture and storage: frames and blind spots. Energy Policy 82, 249–259 (2015).

    Article  CAS  Google Scholar 

  159. Page, B. Beyond HELE: why CCS is imperative now. Cornerstone 4, 10–12 (2016).

    Google Scholar 

  160. Buhr, K. & Hansson, A. Capturing the stories of corporations: a comparison of media debates on carbon capture and storage in Norway and Sweden. Glob. Environ. Change 21, 336–345 (2011).

    Article  Google Scholar 

  161. Edwards, G. A. S. Coal and climate change. Wiley Interdiscip. Rev. Clim. Change 10, e607 (2019).

    Article  Google Scholar 

  162. Pollak, M., Phillips, S. J. & Vajjhala, S. Carbon capture and storage policy in the United States: a new coalition endeavors to change existing policy. Glob. Environ. Change 21, 313–323 (2011).

    Article  Google Scholar 

  163. The Future of Petrochemicals—Towards More Sustainable Plastics and Fertilisers (IEA, 2018); https://www.iea.org/reports/the-future-of-petrochemicals

  164. Technology Roadmap: Low-Carbon Transition in the Cement Industry (IEA and CSI, 2018).

  165. Zhang, C.-Y., Han, R., Yu, B. & Wei, Y.-M. Accounting process-related CO2 emissions from global cement production under Shared Socioeconomic Pathways. J. Clean. Prod. 184, 451–465 (2018).

    Article  Google Scholar 

  166. Janipour, Z., de Nooij, R., Scholten, P., Huijbregts, M. A. J. & de Coninck, H. What are sources of carbon lock-in in energy-intensive industry? A case study into Dutch chemicals production. Energy Res. Soc. Sci. 60, 101320 (2020).

    Article  Google Scholar 

  167. Arens, M., Worrell, E., Eichhammer, W., Hasanbeigi, A. & Zhang, Q. Pathways to a low-carbon iron and steel industry in the medium-term—the case of Germany. J. Clean. Prod. 163, 84–98 (2017).

    Article  CAS  Google Scholar 

  168. Wesseling, J. H. et al. The transition of energy intensive processing industries towards deep decarbonization: characteristics and implications for future research. Renew. Sust. Energy Rev. 79, 1303–1313 (2017).

    Article  CAS  Google Scholar 

  169. Dewald, U. & Achternbosch, M. Why more sustainable cements failed so far? Disruptive innovations and their barriers in a basic industry. Environ. Innov. Soc. Trans. 19, 15–30 (2016).

    Article  Google Scholar 

  170. Hepburn, C. et al. The technological and economic prospects for CO2 utilization and removal. Nature 575, 87–97 (2019).

    Article  CAS  Google Scholar 

  171. Jenkins, J. D., Luke, M. & Thernstrom, S. Getting to zero carbon emissions in the electric power sector. Joule 2, 2498–2510 (2018).

    Article  Google Scholar 

  172. Boston, A., Bongers, G., Byrom, S. & Staffell, I. Balancing flexibility whilst decarbonising electricity: the Australian NEM is changing. In Proc. 14th International Conference on Greenhouse Gas Control Technologies (IEAGHG, 2019); https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3365626#

  173. Backstrand, K., Meadowcroft, J. & Oppenheimer, M. The politics and policy of carbon capture and storage: framing an emergent technology. Glob. Environ. Change 21, 275–281 (2011).

    Article  Google Scholar 

  174. Vergragt, P. J., Markusson, N. & Karlsson, H. Carbon capture and storage, bio-energy with carbon capture and storage, and the escape from the fossil-fuel lock-in. Glob. Environ. Change 21, 282–292 (2011).

    Article  Google Scholar 

  175. Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182–183 (2016).

    Article  CAS  Google Scholar 

  176. Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  177. Garnett, A., Underschultz, J. & Ashworth, P. Scoping Study for Material Carbon Abatement via Carbon Capture and Storage: Project Report (The University of Queensland Surat Deep Aquifer Appraisal Project (UQ-SDAAP), Univ. Queensland, 2019); https://espace.library.uq.edu.au/view/UQ:734606

  178. Birkholzer, J. & Tsang, C.-F. Introduction to the special issue on site characterization for geological storage of CO2. Environ. Geol. 54, 1579–1581 (2008).

    Article  CAS  Google Scholar 

  179. Wang, Y., Zhang, K. & Wu, N. Numerical investigation of the storage efficiency factor for CO2 geological sequestration in saline formations. In Proc. 11th International Conference on Greenhouse Gas Control Technologies (eds Dixon, T. & Yamaji, K.) Vol. 37, 5267–5274 (Elsevier Science, 2013).

  180. Kolster, C., Masnadi, M. S., Krevor, S., MacDowell, N. & Brandt, A. R. CO2 enhanced oil recovery: a catalyst for gigatonne-scale carbon capture and storage deployment? Energy Environ. Sci. 10, 2594–2608 (2017).

    Article  CAS  Google Scholar 

  181. Shi, J.-Q. et al. Snohvit CO2 storage project: assessment of CO2 injection performance through history matching of the injection well pressure over a 32-months period. In Proc. 11th International Conference on Greenhouse Gas Control Technologies (eds Dixon, T. & Yamaji, K.) Vol. 37, 3267–3274 (Elsevier Science, 2013).

  182. Milne, P. Gorgon LNG emissions to rise as sand clogs $3.1B CO2 system. Boiling Cold (12 January 2021).

  183. Milne, P. Gorgon emissions to soar until Chevron fixes CO2 injection. Boiling Cold (10 February 2021).

  184. Carpenter, M., Kvien, K. & Aarnes, J. The CO2QUALSTORE guideline for selection, characterisation and qualification of sites and projects for geological storage of CO2. Int. J. Greenh. Gas Control 5, 942–951 (2011).

    Article  CAS  Google Scholar 

  185. Tapia, J. F. D. & Tan, R. R. Fuzzy optimization of multi-period carbon capture and storage systems with parametric uncertainties. Process Saf. Environ. Prot. 92, 545–554 (2014).

    Article  CAS  Google Scholar 

  186. Liu, G., Gorecki, C. D., Bremer, J. M., Klapperich, R. J. & Braunberger, J. R. Storage capacity enhancement and reservoir management using water extraction: four site case studies. Int. J. Greenh. Gas Control 35, 82–95 (2015).

    Article  CAS  Google Scholar 

  187. Flett, M. et al. Subsurface development of CO2 disposal for the Gorgon Project. Energy Proc. 1, 3031–3038 (2009).

    Article  CAS  Google Scholar 

  188. Greig, C., Bongers, G., Stott, C. & Byrom, S. Overview of CCS Roadmaps and Projects (Univ. Queensland, 2016); https://co2crc.com.au/wp-content/uploads/2019/12/WP3_CCS-Roadmaps-and-Projects.pdf

  189. CCS 2014—What Lies in Store for CCS? 9–32 (OECD/IEA, 2014).

  190. The Costs of CO2 Storage (ZEP, 2011).

  191. Carbon Capture and Sequestration Project Database (MIT, 2016); https://sequestration.mit.edu/tools/projects/index.html

  192. Progressing Development of the UK’s Strategic Carbon Dioxide Storage Resource—A Summary of Results from the Strategic UK CO2 Storage Appraisal Project (ETI, 2016); https://www.eti.co.uk/programmes/carbon-capture-storage/strategic-uk-ccs-storage-appraisal

  193. Irlam, L. Global Costs of Carbon Capture and Storage—2017 Update (GCCSI, 2017).

  194. The Costs of CO2 Capture, Transport and Storage: Post-Demonstration CCS in the EU (ZEP, 2011).

  195. Australian Power Generation Technology Report (CO2CRC, 2015).

  196. Cost of CO2 Capture in the Industrial Sector: Cement and Iron and Steel Industries (IEAGHG, 2018).

  197. CCS 2014—What Lies in Store for CCS? 44–51 (OECD/IEA, 2014).

  198. Ketzer, J. M. M., Machado, C. M., Rockett, G. C. & Iglesias, R. S. Brazilian Atlas of CO2 Capture and Geological Storage (EDIPUCRS, 2016); https://www.globalccsinstitute.com/resources/publications-reports-research/brazilian-atlas-of-co2-capture-and-geological-storage/

  199. Carbon Storage Atlas 5th edn (DoE, 2015); https://www.netl.doe.gov/coal/carbon-storage/strategic-program-support/natcarb-atlas

  200. CO2 Atlas for the Norwegian Continental Shelf. Stavanger, Norway (NPD, 2014); https://www.npd.no/en/facts/publications/co2-atlases/co2-atlas-for-the-norwegian-continental-shelf/

  201. National Carbon Mapping and Infrastructure Plan—Australia: Full Report (DRET, 2009); https://www.parliament.wa.gov.au/parliament/commit.nsf/($lookupRelatedDocsByID)/518FAC2BBA6C246648257C29002DB8E6/$file/NCM_Full_Report.pdf

  202. Kvien, K., Garnett, A., Carpenter, M. E. & Aarnes, J. Application of the CO2QUALSTORE guideline for developing a risk-based investment schedule for an integrated CCS project. In Proc. 10th International Conference on Greenhouse Gas Control Technologies (eds Gale, J. et al.) Vol. 4, 5911–5916 (Elsevier Science, 2011).

Download references

Acknowledgements

We thank A. Pascale, B. DeJesus, J. Kolenbrander and B. Kefford for their contributions to preparing the images used in the manuscript and the Supplementary Information. J.L. received funding support from the Princeton Institute for International and Regional Studies, Princeton University.

Author information

Authors and Affiliations

Authors

Contributions

J.L. conceived the manuscript outline, based on substantial engagement with C.G. and A.G., to elicit their industry experience and research perspectives. J.L wrote the manuscript and undertook the literature review, with contributions from C.G. and A.G. All of the authors contributed to the display items, with specific contributions for Boxes 1 and 2 (outline and images conceived by A.G.), Box 3 (outline and images conceived by C.G. with J.L.), Fig. 1 (conceived by J.L.) and Fig. 2 (conceived and designed by C.G. and J.L.). J.L. undertook the quantitative analysis and prepared all figures for the manuscript and Supplementary Information.

Corresponding author

Correspondence to Joe Lane.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Juan Alcalde, Hang Deng, Michael Kendall and Patricia Larkin for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Discussion 1–3, Tables 1–5 and References.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lane, J., Greig, C. & Garnett, A. Uncertain storage prospects create a conundrum for carbon capture and storage ambitions. Nat. Clim. Chang. 11, 925–936 (2021). https://doi.org/10.1038/s41558-021-01175-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-021-01175-7

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene