Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhanced North Pacific impact on El Niño/Southern Oscillation under greenhouse warming

Abstract

A majority of El Niño/Southern Oscillation (ENSO) events are preceded by the North Pacific Meridional Mode (NPMM), a dominant coupled ocean–atmospheric mode of variability. How the precursory NPMM forcing on ENSO responds to greenhouse warming remains unknown. Here, using climate model ensembles under high-emissions warming scenarios, we find an enhanced future impact on ENSO by the NPMM. This is manifested by increased sensitivity of boreal-winter equatorial Pacific winds and sea surface temperature (SST) anomalies to the NPMM three seasons before. The enhanced NPMM impact translates into an increased frequency of NPMM that leads to an extreme El Niño or La Niña. Under greenhouse warming, higher background SSTs cause a nonlinear evaporation–SST relationship to more effectively induce surface wind anomalies in the equatorial western Pacific, conducive to ENSO development. Thus, NPMM contributes to an increased frequency of future extreme ENSO events and becomes a more influential precursor for their predictability.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Observed and modelled forcing of the NPMM on ENSO.
Fig. 2: Enhanced impact of the NPMM forcing on ENSO under greenhouse warming.
Fig. 3: Stronger impact of the NPMM on ENSO in the future climate.
Fig. 4: Mechanism for the stronger NPMM forcing on ENSO.
Fig. 5: Enhanced impact of the NPMM forcing on ENSO in a single-model ensemble experiment.

Data availability

Data related to the paper can be downloaded from the following websites: HadISST v1.1, https://www.metoffice.gov.uk/hadobs/hadisst/; NCEP/NCAR Reanalysis, https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.html; CMIP5 database, https://esgf-node.llnl.gov/projects/cmip5/; CMIP6 database, https://esgf-node.llnl.gov/projects/cmip6/. A detailed reference and DOI for each CMIP6 model are provided in the Supplementary Information. The CAM3.1-RGO model experiment data are available from the corresponding authors on request.

Code availability

Codes for calculating MCA and NPMM pattern are publicly available via Zenodo at https://doi.org/10.5281/zenodo.5147938 (ref. 57). All other codes are available from the corresponding author on request.

References

  1. 1.

    Cai, W. et al. Butterfly effect and a self-modulating El Niño response to global warming. Nature 585, 68–73 (2020).

    CAS  Article  Google Scholar 

  2. 2.

    Cai, W. et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 1, 215–231 (2020).

    Article  Google Scholar 

  3. 3.

    Chiang, J. C. H. & Vimont, D. J. Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Clim. 17, 4143–4158 (2004).

    Article  Google Scholar 

  4. 4.

    Chang, P. et al. Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett. 34, L16608 (2007).

    Article  Google Scholar 

  5. 5.

    Vimont, D. J., Alexander, M. A. & Fontaine, A. Midlatitude excitation of tropical variability in the Pacific: the role of thermodynamic coupling and seasonality. J. Clim. 22, 518–534 (2009).

    Article  Google Scholar 

  6. 6.

    Alexander, M. A., Vimont, D. J., Chang, P. & Scott, J. D. The impact of extratropical atmospheric variability on ENSO: testing the seasonal footprinting mechanism using coupled model experiments. J. Clim. 23, 2885–2901 (2010).

    Article  Google Scholar 

  7. 7.

    Yu, J.-Y. & Kim, S. T. Relationships between extratropical sea level pressure variations and the Central-Pacific and Eastern-Pacific types of ENSO. J. Clim. 24, 708–720 (2011).

    Article  Google Scholar 

  8. 8.

    Vimont, D. J., Battisti, D. S. & Hirst, A. C. Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett. 28, 3923–3926 (2001).

    Article  Google Scholar 

  9. 9.

    Xie, S.-P. & Philander, S. G. H. A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46A, 340–350 (1994).

    Article  Google Scholar 

  10. 10.

    Stuecker, M. F. Revisiting the Pacific Meridional Mode. Sci. Rep. 8, 3216 (2018).

    Article  CAS  Google Scholar 

  11. 11.

    Zhang, L., Chang, P. & Ji, L. Linking the Pacific Meridional Mode to ENSO: coupled model analysis. J. Clim. 22, 3488–3505 (2009).

    Article  Google Scholar 

  12. 12.

    Larson, S. & Kirtman, B. P. The Pacific Meridional Mode as an ENSO precursor and predictor in the North American multimodel ensemble. J. Clim. 27, 7018–7032 (2014).

    Article  Google Scholar 

  13. 13.

    Lin, C.-Y., Yu, J.-Y. & Hsu, H.-H. CMIP5 model simulations of the Pacific Meridional Mode and its connection to the two types of ENSO. Int. J. Climatol. 35, 2352–2358 (2015).

    Article  Google Scholar 

  14. 14.

    Ma, J., Xie, S.-P. & Xu, H. Contributions of the North Pacific Meridional Mode to ensemble spread of ENSO prediction. J. Clim. 30, 9167–9181 (2017).

    Article  Google Scholar 

  15. 15.

    Amaya, D. J. The Pacific Meridional Mode and ENSO: a review. Curr. Clim. Change Rep. 5, 296–307 (2019).

    Article  Google Scholar 

  16. 16.

    Lu, F., Liu, Z., Liu, Y., Zhang, S. & Jacob, R. Understanding the control of extratropical atmospheric variability on ENSO using a coupled data assimilation approach. Clim. Dyn. 48, 3139–3160 (2017).

    Article  Google Scholar 

  17. 17.

    Lu, F. & Liu, Z. Assessing extratropical influence on observed El Niño–Southern Oscillation events using regional coupled data assimilation. J. Clim. 31, 8961–8969 (2018).

    Article  Google Scholar 

  18. 18.

    Vimont, D. J., Alexander, M. A. & Newman, M. Optimal growth of central and East Pacific ENSO events. Geophys. Res. Lett. 41, 4027–4034 (2014).

    Article  Google Scholar 

  19. 19.

    Amaya, D. J. et al. The North Pacific pacemaker effect on historical ENSO and its mechanisms. J. Clim. 32, 7643–7661 (2019).

    Article  Google Scholar 

  20. 20.

    Ashok, K., Behera, S. K., Rao, S. A., Weng, H. & Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 112, C11007 (2007).

    Article  Google Scholar 

  21. 21.

    Kug, J.-S., Jin, F.-F. & An, S.-I. Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J. Clim. 22, 1499–1515 (2009).

    Article  Google Scholar 

  22. 22.

    Kao, H.-Y. & Yu, J.-Y. Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J. Clim. 22, 615–632 (2009).

    Article  Google Scholar 

  23. 23.

    Yu, J. ‐Y. & Fang, S.-W. The distinct contributions of the seasonal footprinting and charged–discharged mechanisms to ENSO complexity. Geophys. Res. Lett. 45, 6611–6618 (2018).

    Article  Google Scholar 

  24. 24.

    Fang, S.-W. & Yu, J. ‐Y. Contrasting transition complexity between El Niño and La Niña: observations and CMIP5/6 models. Geophys. Res. Lett. 47, e2020GL088926 (2020).

    Google Scholar 

  25. 25.

    Yu, J.-Y., Kao, H.-Y. & Lee, T. Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J. Clim. 23, 2869–2884 (2010).

    Article  Google Scholar 

  26. 26.

    Yu, J.-Y. et al. Linking emergence of the Central-Pacific El Niño to the Atlantic Multi-decadal Oscillation. J. Clim. 28, 651–662 (2015).

    Article  Google Scholar 

  27. 27.

    Hu, Z.-Z., Kumar, A., Huang, B., Zhu, J. & Yu, J.-Y. The interdecadal shift of ENSO properties in 1999/2000: a review. J. Clim. 33, 4441–4462 (2020).

    Article  Google Scholar 

  28. 28.

    Capotondi, A. & Sardeshmukh, P. D. Optimal precursors of different types of ENSO events. Geophys. Res. Lett. 42, 9952–9960 (2015).

    Article  Google Scholar 

  29. 29.

    Zhang, H., Clement, A. & Di Nezio, P. The South Pacific Meridional Mode: a mechanism for ENSO-like variability. J. Clim. 27, 769–783 (2014).

    Article  Google Scholar 

  30. 30.

    Min, Q., Su, J., Zhang, R. & Rong, X. What hindered the El Niño pattern in 2014? Geophys. Res. Lett. 42, 6762–6770 (2015).

    Article  Google Scholar 

  31. 31.

    Min, Q., Su, J., Zhang, R. & Rong, X. Impact of the South and North Pacific meridional modes on the El Niño–Southern Oscillation: observational analysis and comparison. J. Clim. 30, 1705–1720 (2017).

    Article  Google Scholar 

  32. 32.

    You, Y. & Furtado, J. C. The South Pacific Meridional Mode and its role in tropical Pacific climate variability. J. Clim. 31, 10141–10163 (2018).

    Article  Google Scholar 

  33. 33.

    Liguori, G. & Di Lorenzo, E. Separating the North and South Pacific meridional modes contributions to ENSO and tropical decadal variability. Geophys. Res. Lett. 46, 906–915 (2019).

    Article  Google Scholar 

  34. 34.

    Di Lorenzo, E. et al. ENSO and meridional modes: a null hypothesis for Pacific climate variability. Geophys. Res. Lett. 42, 9440–9448 (2015).

    Article  Google Scholar 

  35. 35.

    Zhao, Y. & Di Lorenzo, E. The impacts of extra-tropical ENSO precursors on tropical Pacific decadal-scale variability. Sci. Rep. 10, 3031 (2020).

    CAS  Article  Google Scholar 

  36. 36.

    Pegion, K., Selman, C. M., Larson, S. M., Furtado, J. C. & Becker, E. J. The impact of the extratropics on ENSO diversity and predictability. Clim. Dyn. 54, 4469–4484 (2020).

    Article  Google Scholar 

  37. 37.

    Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 97, 163–172 (1969).

    Article  Google Scholar 

  38. 38.

    Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).

    CAS  Article  Google Scholar 

  39. 39.

    Liguori, G. & Di Lorenzo, E. Meridional modes and increasing Pacific decadal variability under anthropogenic forcing. Geophys. Res. Lett. 45, 983–991 (2018).

    Article  Google Scholar 

  40. 40.

    Anderson, B. T., Perez, R. C. & Karspeck, A. Triggering of El Niño onset through trade wind-induced charging of the equatorial Pacific. Geophys. Res. Lett. 40, 1212–1216 (2013).

    Article  Google Scholar 

  41. 41.

    Czaja, A., van der Vaart, P. & Marshall, J. A diagnostic study of the role of remote forcing in tropical Atlantic variability. J. Clim. 15, 3280–3290 (2002).

    Article  Google Scholar 

  42. 42.

    Vimont, D. J. Transient growth of thermodynamically coupled variations in the tropics under an equatorially symmetric mean state. J. Clim. 23, 5771–5789 (2010).

    Article  Google Scholar 

  43. 43.

    Sanchez, S. C., Amaya, D. J., Miller, A. J., Xie, S.-P. & Charles, C. D. The Pacific Meridional Mode over the last millennium. Clim. Dyn. 53, 3547–3560 (2019).

    Article  Google Scholar 

  44. 44.

    Gill, A. E. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980).

    Article  Google Scholar 

  45. 45.

    Jia, F. et al. Weakening Atlantic Niño–Pacific connection under greenhouse warming. Sci. Adv. 5, eaax4111 (2019).

    CAS  Article  Google Scholar 

  46. 46.

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Article  Google Scholar 

  47. 47.

    Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  48. 48.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  49. 49.

    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  50. 50.

    Austin, P. C. & Tu, J. V. Bootstrap methods for developing predictive models. Am. Stat. 58, 131–137 (2004).

    Article  Google Scholar 

  51. 51.

    Takahashi, K. & Dewitte, B. Strong and moderate nonlinear El Niño regimes. Clim. Dyn. 46, 1627–1645 (2016).

    Article  Google Scholar 

  52. 52.

    Richter, I. & Xie, S.-P. The muted precipitation increase in global warming simulations: a surface evaporation perspective. J. Geophys. Res. 113, D24118 (2008).

    Article  Google Scholar 

  53. 53.

    Zebiak, S. E. & Cane, M. A. A model El Niño–Southern Oscillation. Mon. Weather Rev. 115, 2262–2278 (1987).

    Article  Google Scholar 

  54. 54.

    Clement, A. C., Seager, R., Cane, M. A. & Zebiak, S. E. An ocean dynamical thermostat. J. Clim. 9, 2190–2196 (1996).

    Article  Google Scholar 

  55. 55.

    Fang, Y. A Coupled Model Study of the Remote Influence of ENSO on Tropical Atlantic SST Variability. PhD thesis, Texas A&M Univ. (2005).

  56. 56.

    Chiang, J. C. H., Fang, Y. & Chang, P. Interhemispheric thermal gradient and tropical Pacific climate. Geophys. Res. Lett. 35, L14704 (2008).

    Article  Google Scholar 

  57. 57.

    Jia, F. Code for MCA and regression. Zenodo https://doi.org/10.5281/zenodo.5147938 (2021).

Download references

Acknowledgements

This work is supported by the Strategic Priority Research Program of Chinese Academy of Sciences, grant number XDB40030000. F.J. is supported by the National Key Research and Development Program of China (2020YFA0608801), National Natural Science Foundation of China (NSFC) projects (41876008, 41730534) and Youth Innovation Promotion Association of Chinese Academy of Sciences (2021205). B.G. is supported by NSFC projects (41922039, 91858102) and National Key Research and Development Program of China (2019YFA0607001, 2016YFA0601804). W.C. is also supported by CSHOR. CSHOR is a joint research Centre for Southern Hemisphere Oceans Research between QNLM and CSIRO. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modelling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP6 and ESGF.

Author information

Affiliations

Authors

Contributions

F.J., W.C. and L.W. designed the research; F.J. performed the experiment, analysed the data and wrote the initial manuscript with W.C.; B.G. contributed to the mechanism analysis; all authors contributed to interpreting results and improving this paper.

Corresponding authors

Correspondence to Wenju Cai or Lixin Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Jing Ma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Table 1 and References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, F., Cai, W., Gan, B. et al. Enhanced North Pacific impact on El Niño/Southern Oscillation under greenhouse warming. Nat. Clim. Chang. 11, 840–847 (2021). https://doi.org/10.1038/s41558-021-01139-x

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing