Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Integrated perspective on translating biophysical to economic impacts of climate change


Estimates of climate change’s economic impacts vary widely, depending on the applied methodology. This uncertainty is a barrier for policymakers seeking to quantify the benefits of mitigation. In this Perspective, we provide a comprehensive overview and categorization of the pathways and methods translating biophysical impacts into economic damages. We highlight the open question of the persistence of impacts as well as key methodological gaps, in particular the effect of including inequality and adaptation in the assessments. We discuss the need for intensifying interdisciplinary research, focusing on the uncertainty of econometric estimates of damages as well as identification of the most socioeconomically relevant types of impact. A structured model intercomparison related to economic impacts is noted as a crucial next step.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Taxonomy of approaches to capture economic impacts of climate change.
Fig. 2: Global GDP losses at increasing warming levels, estimated with different modelling approaches.
Fig. 3: Level and growth effects.
Fig. 4: Climate impacts between countries.


  1. 1.

    Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  2. 2.

    Bauer, N. et al. Shared socio-economic pathways of the energy sector—quantifying the narratives. Glob. Environ. Change 42, 316–330 (2017).

    Article  Google Scholar 

  3. 3.

    Frieler, K. et al. Assessing the impacts of 1.5 °C global warming—simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev. 10, 4321–4345 (2017).

    Article  Google Scholar 

  4. 4.

    Howard, P. H. & Sterner, T. Few and not so far between: a meta-analysis of climate damage estimates. Environ. Resour. Econ. 68, 197–225 (2017).

    Article  Google Scholar 

  5. 5.

    Carleton, T. A. & Hsiang, S. M. Social and economic impacts of climate. Science 353, aad9837 (2016).

    Article  CAS  Google Scholar 

  6. 6.

    Dell, M., Jones, B. F. & Olken, B. A. Temperature shocks and economic growth: evidence from the last half century. Am. Econ. J. Macroecon. 4, 66–95 (2012).

    Article  Google Scholar 

  7. 7.

    Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Kalkuhl, M. & Wenz, L. The impact of climate conditions on economic production. Evidence from a global panel of regions. J. Environ. Econ. Manag. 103, 102360 (2020).

    Article  Google Scholar 

  9. 9.

    Glanemann, N., Willner, S. N. & Levermann, A. Paris Climate Agreement passes the cost–benefit test. Nat. Commun. 11, 110 (2020).

    CAS  Article  Google Scholar 

  10. 10.

    Moore, F. C. & Diaz, D. B. Temperature impacts on economic growth warrant stringent mitigation policy. Nat. Clim. Change 5, 127–131 (2015).

    Article  Google Scholar 

  11. 11.

    Hänsel, M. C. et al. Climate economics support for the UN climate targets. Nat. Clim. Change 10, 781–789 (2020).

    Article  CAS  Google Scholar 

  12. 12.

    Dennig, F., Budolfson, M. B., Fleurbaey, M., Siebert, A. & Socolow, R. H. Inequality, climate impacts on the future poor, and carbon prices. Proc. Natl Acad. Sci. USA 112, 15827–15832 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Tol, R. The economic impacts of climate change. Rev. Environ. Econ. Policy 12, 4–25 (2018).

    Article  Google Scholar 

  14. 14.

    Burke, M., Craxton, M., Kolstad, C. & Onda, C. Some research challenges in the economics of climate change. Clim. Change Econ. 7, 1650002 (2016).

    Article  Google Scholar 

  15. 15.

    Auffhammer, M. Quantifying economic damages from climate change. J. Econ. Perspect. 32, 33–52 (2018).

    Article  Google Scholar 

  16. 16.

    Dell, M., Jones, B. & Olken, B. What do we learn from the weather? The new climate-economy literature. J. Econ. Lit. 52, 740–798 (2014).

    Article  Google Scholar 

  17. 17.

    Diaz, D. & Moore, F. Quantifying the economic risks of climate change. Nat. Clim. Change 7, 774–782 (2017).

    Article  Google Scholar 

  18. 18.

    Ho, M. et al. Modelling consumption and constructing long-term baselines in final demand. J. Glob. Econ. Anal. 5, 63–108 (2020).

    Article  Google Scholar 

  19. 19.

    Ghersi, F. & Hourcade, J. Macroeconomic consistency in E3 modeling: the continued fable of the elephant and the rabbit. Energy J. 27, 39–62 (2006).

    Google Scholar 

  20. 20.

    Hinkel, J. & Klein, R. Integrating knowledge to assess coastal vulnerability to sea-level rise: the development of the diva tool. Glob. Environ. Change 19, 384–395 (2009).

    Article  Google Scholar 

  21. 21.

    Després, J. et al. Storage as a flexibility option in power systems with high shares of variable renewable energy sources: a poles-based analysis. Energy Econ. 64, 638–650 (2017).

    Article  Google Scholar 

  22. 22.

    Bosello, F., Eboli, F. & Pierfederici, R. Assessing the Economic Impacts of Climate Change Working Paper No. 2.2012 (FEEM, 2012).

  23. 23.

    Dellink, R., Lanzi, E. & Chateau, J. The sectoral and regional economic consequences of climate change to 2060. Environ. Resour. Econ. 72, 309–363 (2019).

    Article  Google Scholar 

  24. 24.

    Lamperti, F., Dosi, G., Napoletano, M., Roventini, A. & Sapio, A. Faraway, so close: coupled climate and economic dynamics in an agent-based integrated assessment model. Ecol. Econ. 150, 315–339 (2018).

    Article  Google Scholar 

  25. 25.

    Otto, C., Willner, S. N., Wenz, L., Frieler, K. & Levermann, A. Modeling loss-propagation in the global supply network: the dynamic agent-based model acclimate. J. Econ. Dynam. Control 83, 232–269 (2017).

    Article  Google Scholar 

  26. 26.

    Hallegatte, S. Modeling the role of inventories and heterogeneity in the assessment of the economic costs of natural disasters. Risk Anal. 34, 152–167 (2013).

    Article  Google Scholar 

  27. 27.

    Fankhauser, S. & Tol, R. On climate change and economic growth. Resour. Energy Econ. 27, 1–17 (2005).

    Article  Google Scholar 

  28. 28.

    Kalkul, M. & Edenhofer, O. Knowing the Damages Is Not Enough: The General Equilibrium Impacts of Climate Change Working Paper No. 5862 (CESifo, 2016).

  29. 29.

    Nordhaus, W. D. & Moffatt, A. A Survey of Global Impacts of Climate Change: Replication, Survey Methods, and a Statistical Analysis Working Paper No. 23646 (NBER, 2017).

  30. 30.

    Nordhaus, W. D. Revisiting the social cost of carbon. Proc. Natl Acad. Sci. USA 114, 1518–1523 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Hope, C. Critical issues for the calculation of the social cost of CO2: why the estimates from PAGE09 are higher than those from PAGE2002. Climatic Change 117, 531–543 (2013).

    Article  Google Scholar 

  32. 32.

    Waldhoff, S., Anthoff, D., Rose, S. & Tol, R. S. J. The marginal damage costs of different greenhouse gases: an application of FUND. Economics 8, 2014–31 (2014).

    Article  Google Scholar 

  33. 33.

    Pindyck, R. S. Climate change policy: what do the models tell us? J. Econ. Lit. 51, 860–872 (2013).

    Article  Google Scholar 

  34. 34.

    Crost, B. & Traeger, C. Optimal CO2 mitigation under damage risk valuation. Nat. Clim. Change 4, 631–636 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Cai, Y. & Lontzek, T. The social cost of carbon with economic and climate risks. J. Polit. Econ. 127, 2684–2734 (2019).

    Article  Google Scholar 

  36. 36.

    Bastien-Olvera, B. A. & Moore, F. C. Use and non-use value of nature and the social cost of carbon. Nat. Sustain. 4, 101–108 (2021).

    Article  Google Scholar 

  37. 37.

    Schultes, A. et al. Economic Damages from On-Going Climate Change Imply Deeper Near-Term Emission Cuts Working Paper No. 103655 (MPRA, 2020).

  38. 38.

    Dietz, S. & Stern, N. Endogenous growth, convexity of damage and climate risk: how Nordhaus’ framework supports deep cuts in carbon emissions. Econ. J. 125, 574–620 (2015).

    Article  Google Scholar 

  39. 39.

    Carleton, T. A. et al. Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits Working Paper No. 27599 (NBER, 2020).

  40. 40.

    Newell, R. G., Prest, B. C. & Sexton, S. E. The GDP-temperature relationship: implications for climate change damages. J. Environ. Econ. Manag. 108, 102445 (2021).

  41. 41.

    Kahn, M. E. et al. Long-Term Macroeconomic Effects of Climate Change: A Cross-Country Analysis Working Paper No. 26167 (NBER, 2019).

  42. 42.

    Acevedo, S., Mrkaic, M., Novta, N., Pugacheva, E. & Topalova, P. The effects of weather shocks on economic activity: what are the channels of impact. J. Macroecon. 65, 103207 (2020).

    Article  Google Scholar 

  43. 43.

    Burke, M. & Tanutama, V. Climatic Constraints on Aggregate Economic Output Working Paper No. 25779 (NBER, 2019).

  44. 44.

    Colacito, R., Hoffmann, B. & Phan, T. Temperature and growth: a panel analysis of the United States. J. Money Credit Bank. 51, 313–368 (2019).

    Article  Google Scholar 

  45. 45.

    Deryugina, T. & Hsiang, S. The Marginal Product of Climate Working Paper No. 24072 (NBER, 2017).

  46. 46.

    Letta, M. & Tol, R. Weather, climate and total factor productivity. Environ. Resour. Econ. 73, 283–305 (2019).

    Article  Google Scholar 

  47. 47.

    Hsiang, S. M. & Jina, A. S. The Causal Effect of Environmental Catastrophe on Long-Run Economic Growth: Evidence from 6,700 Cyclones Working Paper No. 20352 (NBER, 2014).

  48. 48.

    Kikstra, J. et al. The social cost of carbon dioxide under climate-economy feedbacks and temperature variability. Preprint at (2021).

  49. 49.

    Guivarch, C. & Pottier, A. Climate damage on production or on growth: what impact on the social cost of carbon? Environ. Model. Assess. 23, 117–130 (2018).

    Article  Google Scholar 

  50. 50.

    Yumashev, D. et al. Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements. Nat. Commun. 10, 1900 (2019).

    Article  CAS  Google Scholar 

  51. 51.

    Damania, R., Desbureaux, S. & Zaveri, E. Does rainfall matter for economic growth? Evidence from global sub-national data (1990-2014). J. Environ. Econ. Manag. 102, 102335 (2020).

    Article  Google Scholar 

  52. 52.

    Gourio, F. & Fries, C. Adaptation and the Cost of Rising Temperature for the U.S. Economy Working Paper No. 2020-08 (Federal Reserve Bank of Chicago, 2020).

  53. 53.

    Hsiang, S. et al. Estimating economic damage from climate change in the United States. Science 356, 1362–1369 (2017).

    CAS  Article  Google Scholar 

  54. 54.

    Takakura, J. et al. Dependence of economic impacts of climate change on anthropogenically directed pathways. Nat. Clim. Change 9, 737–741 (2019).

    Article  Google Scholar 

  55. 55.

    Roson, R. & Satori, M. Estimation of climate change damage functions for 140 regions in the GTAP9 database. J. Glob. Econ. Anal. 1, 78–115 (2016).

    Article  Google Scholar 

  56. 56.

    Hsiang, S., Oliva, P. & Walker, R. The distribution of environmental damages. Rev. Environ. Econ. Policy 13, 83–103 (2019).

    Article  Google Scholar 

  57. 57.

    Ciscar, J.-C. et al. Climate Impacts in Europe: Final Report of the JRC PESETA III Project (European Commission, 2018).

  58. 58.

    Kompas, T., Pham, V. H. & Che, T. N. The effects of climate change on GDP by country and the global economic gains from complying with the Paris Climate Accord. Earths Future 6, 1153–1173 (2018).

    Article  Google Scholar 

  59. 59.

    Willner, S. N., Otto, C. & Levermann, A. Global economic response to river floods. Nat. Clim. Change 8, 594–598 (2018).

    Article  Google Scholar 

  60. 60.

    Kompas, T. & Van Ha, P. The ‘curse of dimensionality’ resolved: the effects of climate change and trade barriers in large dimensional modelling. Econ. Model. 80, 103–110 (2019).

    Article  Google Scholar 

  61. 61.

    Pratt, S., Blake, A. & Swann, P. Dynamic general equilibrium model with uncertainty: uncertainty regarding the future path of the economy. Econ. Model. 32, 429–439 (2013).

    Article  Google Scholar 

  62. 62.

    Hertel, T. W., West, T. A., Börner, J. & Villoria, N. B. A review of global-local-global linkages in economic land-use/cover change models. Environ. Res. Lett. 14, 053003 (2019).

    Article  Google Scholar 

  63. 63.

    Jung, H.-S. & Thorbecke, E. The impact of public education expenditure on human capital, growth, and poverty in Tanzania and Zambia: a general equilibrium approach. J. Policy Model. 25, 701–725 (2003).

    Article  Google Scholar 

  64. 64.

    Farmer, K. & Wendner, R. Dynamic multi-sector CGE modeling and the specification of capital. Struct. Change Econ. Dynam. 15, 469–492 (2004).

    Article  Google Scholar 

  65. 65.

    Dellink, R., Lanzi, E. & Chateau, J. The sectoral and regional economic consequences of climate change to 2060. Environ. Resour. Econ. 72, 309–363 (2019).

    Article  Google Scholar 

  66. 66.

    Piontek, F. et al. Multisectoral climate impact hotspots in a warming world. Proc. Natl Acad. Sci. USA 111, 3233–3238 (2014).

    CAS  Article  Google Scholar 

  67. 67.

    Smith, A. & Krusell, P. Climate Change Around the World Working Paper No. 1582 (Society for Economic Dynamics, 2017).

  68. 68.

    Cruz, J. & Rossi-Hansberg, E. The Economic Geography of Global Warming Working Paper No. w28466, (NBER, 2021).

  69. 69.

    Arrow, K. et al. Determining benefits and costs for future generations. Science 341, 349–350 (2013).

    CAS  Article  Google Scholar 

  70. 70.

    Tol, R. S. The social cost of carbon. Annu. Rev. Resour. Econ. 3, 419–443 (2011).

    Article  Google Scholar 

  71. 71.

    Peterson, S. Uncertainty and economic analysis of climate change: a survey of approaches and findings. Environ. Model. Assess. 11, 1–17 (2006).

    Article  Google Scholar 

  72. 72.

    Schelling, T. C. Some economics of global warming. Am. Econ. Rev. 82, 1–14 (1992).

    Google Scholar 

  73. 73.

    Fankhauser, S., Tol, R. S. & Pearce, D. W. The aggregation of climate change damages: a welfare theoretic approach. Environ. Resour. Econ. 10, 249–266 (1997).

    Article  Google Scholar 

  74. 74.

    Ricke, K., Drouet, L., Caldeira, K. & Tavoni, M. Country-level social cost of carbon. Nat. Clim. Change 8, 895–900 (2018).

    CAS  Article  Google Scholar 

  75. 75.

    Diffenbaugh, N. S. & Burke, M. Global warming has increased global economic inequality. Proc. Natl Acad. Sci. USA 116, 9808–9813 (2019).

    CAS  Article  Google Scholar 

  76. 76.

    Taconet, N., Méjean, A. & Guivarch, C. Influence of climate change impacts and mitigation costs on inequality between countries. Climatic Change 160, 15–34 (2020).

    Article  Google Scholar 

  77. 77.

    de Laubier Longuet Marx, N., Espagne, E. & Ngo Duc, T. Non-Linear Impacts of Climate Change on Income and Inequality in Vietnam Working Paper No. e47825f2-0059-4010-8291-1 (Agence Française de Développement, 2019).

  78. 78.

    Sedova, B., Kalkuhl, M. & Mendelsohn, R. Distributional impacts of weather and climate in rural India. Econ. Disasters Clim. Change 4, 5–44 (2019).

    Article  Google Scholar 

  79. 79.

    Tol, R. S. J. The distributional impact of climate change. Ann. NY Acad. Sci. (2020).

  80. 80.

    Baer, P. Equity in climate-economy scenarios: the importance of subnational income distribution. Environ. Res. Lett. 4, 015007 (2009).

    Article  Google Scholar 

  81. 81.

    Rao, N. D., Ruijven, B. J. V., Riahi, K. & Bosetti, V. Improving poverty and inequality modelling in climate research. Nat. Clim. Change 7, 857–862 (2017).

    Article  Google Scholar 

  82. 82.

    Budolfson, M., Dennig, F., Fleurbaey, M., Siebert, A. & Socolow, R. H. The comparative importance for optimal climate policy of discounting, inequalities and catastrophes. Climatic Change 145, 481–494 (2017).

    Article  Google Scholar 

  83. 83.

    Hallegatte, S. & Rozenberg, J. Climate change through a poverty lens. Nat. Clim. Change 7, 250–256 (2017).

    Article  Google Scholar 

  84. 84.

    van Ruijven, B. J., O’Neill, B. C. & Chateau, J. Methods for including income distribution in global CGE models for long-term climate change research. Energy Econ. 51, 530–543 (2015).

    Article  Google Scholar 

  85. 85.

    Kornek, U., Klenert, D., Edenhofer, O. & Fleurbaey, M. The Social Cost of Carbon and Inequality: When Local Redistribution Shapes Global Carbon Prices Working Paper No. 7628 (CESifo, 2019).

  86. 86.

    de Bruin, K. C., Dellink, R. B. & Tol, R. S. J. AD-DICE: an implementation of adaptation in the DICE model. Climatic Change 95, 63–81 (2009).

    Article  Google Scholar 

  87. 87.

    Martinich, J. & Crimmins, A. Climate damages and adaptation potential across diverse sectors of the United States. Nat. Clim. Change 9, 397–404 (2019).

    Article  Google Scholar 

  88. 88.

    Schinko, T. et al. Economy-wide effects of coastal flooding due to sea level rise: a multi-model simultaneous treatment of mitigation, adaptation, and residual impacts. Environ. Res. Commun. 2, 015002 (2020).

    Article  Google Scholar 

  89. 89.

    Deryugina, T. & Hsiang, S. Does the Environment Still Matter? Daily Temperature and Income in the United States Technical Report No. w20750 (NBER, 2014).

  90. 90.

    Burke, M. & Emerick, K. Adaptation to climate change: evidence from US agriculture. Am. Econ. J. Econ. Policy 8, 106–140 (2016).

    Article  Google Scholar 

  91. 91.

    Bosello, F., Carraro, C. & De Cian, E. Climate policy and the optimal balance between mitigation, adaptation and unavoided damage. Clim. Change Econ. 1, 71–92 (2010).

    Article  Google Scholar 

  92. 92.

    Bento, A., Miller, N. S., Mookerjee, M. & Severnini, E. R. A Unifying Approach to Measuring Climate Change Impacts and Adaptation Working Paper No. 27247 (NBER, 2020).

  93. 93.

    van der Wiel, K. et al. Rapid attribution of the August 2016 flood-inducing extreme precipitation in south Louisiana to climate change. Hydrol. Earth Syst. Sci. 21, 897–921 (2017).

    Article  Google Scholar 

  94. 94.

    Ray, D. et al. Climate change has likely already affected global food production. PLoS ONE 14, e0217148 (2019).

    CAS  Article  Google Scholar 

  95. 95.

    Wilcox, L. J. et al. Multiple perspectives on the attribution of the extreme European summer of 2012 to climate change. Clim. Dynam. 50, 3537–3555 (2018).

    Article  Google Scholar 

  96. 96.

    Mitchell, D. et al. Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ. Res. Lett. 11, 074006 (2016).

    Article  Google Scholar 

  97. 97.

    Piontek, F. et al. Economic growth effects of alternative climate change impact channels in economic modeling. Environ. Resour. Econ. 73, 1357–1385 (2019).

    Article  Google Scholar 

  98. 98.

    Hartmann, D. L. in Global Physical Climatology 2nd edn (ed. Hartmann, D. L.) 325–360 (Elsevier, 2016).

  99. 99.

    Emmerling, J. et al. The WITCH 2016 Model—Documentation and Implementation of the Shared Socioeconomic Pathways Working Paper No. 2016.42 (FEEM, 2016).

  100. 100.

    Calvin, K. et al. Global market and economic welfare implications of changes in agricultural yields due to climate change. Clim. Change Econ. 11, 2050005 (2020).

    Article  Google Scholar 

  101. 101.

    Pretis, P., Schwarz, M., Tang, K., Haustein, K. & Allen, M. R. Uncertain impacts on economic growth when stabilizing global temperatures at 1.5 °C or 2 °C warming. Phil. Trans. R. Soc. A 376, 20160460 (2018).

    Article  Google Scholar 

Download references


We thank D. Diaz for providing the data for the implied damage functions for the FUND and PAGE models as shown in the final column of Table 1. We also thank the participants of the workshop ‘Integrating impacts, mitigation and inequality—state of the art and road ahead’, held in 2019 at the Potsdam Institute for Climate Impact Research, for input and discussions, as well as F. Moore for comments. The authors acknowledge the funding provided by the NAVIGATE project (H2020/2019-2023, grant agreement number 821124) of the European Commission. F.P. acknowledges funding through the ENGAGE project, funded through the Leibniz Competition (SAW-2016-PIK-1), and the CHIPS project, part of AXIS, an ERA-NET initiated by JPI Climate, funded by FORMAS (Sweden), DLR/BMBF (Germany, grant no. 01LS1904A), AEI (Spain) and ANR (France) with co-funding by the European Union (grant no. 776608).

Author information




F.P., J.R., J.E., T.K., N.T., A.M. and B.S. developed the synopsis. F.P., J.R., J.E., T.K., N.T., A.M., B.S. and L.D. wrote the manuscript with contributions by C.O. and M.T. The figures were developed by F.P., J.R., T.K., J.E. and N.T. All authors contributed to the literature review. Supplementary Table 1 was developed by N.T. with contributions by all authors.

Corresponding author

Correspondence to Franziska Piontek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Climate Change thanks Gilbert Metcalf, Franziska Schünemann, Richard Tol and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1 and 2, and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Piontek, F., Drouet, L., Emmerling, J. et al. Integrated perspective on translating biophysical to economic impacts of climate change. Nat. Clim. Chang. 11, 563–572 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing