Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increased economic drought impacts in Europe with anthropogenic warming

Abstract

While climate change will alter the distribution of water in time and space, quantifications of drought risk under global warming remain uncertain. Here, we show that in Europe, drought damages could strongly increase with global warming and cause a regional imbalance in future drought impacts. In the absence of climate action (4 °C in 2100 and no adaptation), annual drought losses in the European Union and United Kingdom combined are projected to rise to more than €65 billion per year compared with €9 billion per year currently, or two times larger when expressed relative to the size of the economy. Drought losses show the strongest rise in southern and western parts of Europe, where drought conditions at 4 °C could reduce regional agriculture economic output by 10%. With high warming, drought impacts will become a fraction of current impacts in northern and northeastern regions. Keeping global warming well below 2 °C would avoid most impacts in affected regions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fraction of area exposed to changes in drought occurrence for Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) European subregions.
Fig. 2: Expected annual damage in the baseline and at GWLs for the EU + UK and IPCC AR5 subregions, assuming static and 2100 economic conditions.
Fig. 3: Sector shares in total drought damages under base (2015) and 2100 socioeconomic conditions for EU + UK and IPCC AR5 European subregions.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from several databases listed in the Methods of the manuscript and the referred studies. Data are available from the authors on reasonable request and following data restrictions from the sources.

Code availability

The code that supported the findings of this study is available from the corresponding author upon reasonable request.

References

  1. Drought in Central‐Northern Europe (EDO, 2018); https://edo.jrc.ec.europa.eu/documents/news/EDODroughtNews201809_Central_North_Europe.pdf

  2. Drought in Europe (EDO, 2019); https://edo.jrc.ec.europa.eu/documents/news/EDODroughtNews201908_Europe.pdf

  3. Kovats, R. S. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Fields, C. B. et al.) 1267–1326 (Cambridge Univ. Press, 2014).

  4. Spinoni, J., Naumann, G. & Vogt, J. V. Pan-European seasonal trends and recent changes of drought frequency and severity. Glob. Planet. Change 148, 113–130 (2017).

    Article  Google Scholar 

  5. Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).

    Article  Google Scholar 

  6. Döll, P., Fiedler, K. & Zhang, J. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol. Earth Syst. Sci. 13, 2413 (2009).

    Article  Google Scholar 

  7. Wada, Y., Van Beek, L. P., Wanders, N. & Bierkens, M. F. Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett. 8, 034036 (2013).

    Article  Google Scholar 

  8. Tijdeman, E., Hannaford, J. & Stahl, K. Human influences on streamflow drought characteristics in England and Wales. Hydrol. Earth Syst. Sci. 22, 1051–1064 (2018).

    Article  Google Scholar 

  9. Beniston, M. et al. Future extreme events in European climate: an exploration of regional climate model projections. Climatic Change 81, 71–95 (2007).

    Article  Google Scholar 

  10. Nikulin, G., Kjellstrom, E., Hansson, U. L. F., Strandberg, G. & Ullerstig, A. Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A 63, 41–55 (2011).

    Article  Google Scholar 

  11. Forzieri, G. et al. Ensemble projections of future streamflow droughts in Europe. Hydrol. Earth Syst. Sci. 18, 85–108 (2014).

    Article  Google Scholar 

  12. Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421 (2018).

    Article  Google Scholar 

  13. Marx, A. et al. Climate change alters low flows in Europe under global warming of 1.5, 2, and 3 °C. Hydrol. Earth Syst. Sci. 22, 1017–1032 (2018).

    Article  Google Scholar 

  14. Stahl, K. et al. Impacts of European drought events: insights from an international database of text-based reports. Nat. Hazards Earth Syst. Sci. 16, 801–819 (2016).

    Article  Google Scholar 

  15. Mapping the Impacts of Natural hazards and Technological Accidents in Europe: An Overview of the Last Decade Technical Report No. 13/2010 (EEA, 2011); http://op.europa.eu/en/publication-detail/-/publication/4f5878ba-0947-4fb6-964b-8818cfda3de7/language-en

  16. Schär, C. et al. The role of increasing temperature variability in European summer heatwaves. Nature 427, 332–336 (2004).

    Article  Google Scholar 

  17. Gil, M., Garrido, A. & Hernández-Mora, N. Direct and indirect economic impacts of drought in the agri-food sector in the Ebro River basin (Spain). Nat. Hazards Earth Syst. Sci. 13, 2679–2694 (2013).

    Article  Google Scholar 

  18. García-León, D., Standardi, G. & Staccione, A. An integrated approach for the estimation of agricultural drought costs. Land Use Policy 100, 104923 (2021).

    Article  Google Scholar 

  19. Byers, E. A., Coxon, G., Freer, J. & Hall, J. W. Drought and climate change impacts on cooling water shortages and electricity prices in Great Britain. Nat. Commun. 11, 2239 (2020).

    Article  CAS  Google Scholar 

  20. Salmoral, G., Rey, D., Rudd, A., Margon, Pde & Holman, I. A probabilistic risk assessment of the national economic impacts of regulatory drought management on irrigated agriculture. Earths Future 7, 178–196 (2019).

    Article  Google Scholar 

  21. Naumann, G., Spinoni, J., Vogt, J. V. & Barbosa, P. Assessment of drought damages and their uncertainties in Europe. Environ. Res. Lett. 10, 124013 (2015).

    Article  Google Scholar 

  22. Stagge, J. H., Kohn, I., Tallaksen, L. M. & Stahl, K. Modeling drought impact occurrence based on meteorological drought indices in Europe. J. Hydrol. 530, 37–50 (2015).

    Article  Google Scholar 

  23. Blauhut, V. et al. Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors. Hydrol. Earth Syst. Sci. 20, 2779–2800 (2016).

    Article  Google Scholar 

  24. Freire-González, J., Decker, C. & Hall, J. W. The economic impacts of droughts: a framework for analysis. Ecol. Econ. 132, 196–204 (2017).

    Article  Google Scholar 

  25. The 2015 Ageing Report: Underlying Assumptions and Projection Methodologies (European Commission, 2014).

  26. Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).

    Article  Google Scholar 

  27. Dosio, A. & Fischer, E. M. Will half a degree make a difference? Robust projections of indices of mean and extreme climate in Europe under 1.5 °C, 2 °C, and 3 °C global warming. Geophys. Res. Lett. 45, 935–944 (2018).

    Article  Google Scholar 

  28. Jacob, D. et al. Climate impacts in Europe under +1.5 °C global warming. Earths Future 6, 264–285 (2018).

    Article  Google Scholar 

  29. Alfieri, L., Dottori, F., Betts, R., Salamon, P. & Feyen, L. Multi-model projections of river flood risk in Europe under global warming. Climate 6, 6 (2018).

    Article  Google Scholar 

  30. Vousdoukas, M. I. et al. Climatic and socioeconomic controls of future coastal flood risk in Europe. Nat. Clim. Change 8, 776–780 (2018).

    Article  Google Scholar 

  31. Estrela, T. & Vargas, E. Drought management plans in the European Union. The case of Spain. Water Resour. Manag. 26, 1537–1553 (2012).

    Article  Google Scholar 

  32. Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections in the shared socioeconomic pathways. Glob. Environ. Change 42, 200–214 (2017).

    Article  Google Scholar 

  33. Christensen, P., Gillingham, K. & Nordhaus, W. Uncertainty in forecasts of long-run economic growth. Proc. Natl Acad. Sci. USA 115, 5409–5414 (2018).

    Article  CAS  Google Scholar 

  34. Global Assessment Report on Disaster Risk Reduction 2019 (United Nations Office for Disaster Risk Reduction, 2019).

  35. Forzieri, G. et al. Escalating impacts of climate extremes on critical infrastructures in Europe. Glob. Environ. Change 48, 97–107 (2018).

    Article  Google Scholar 

  36. Erfurt, M., Glaser, R. & Blauhut, V. Changing impacts and societal responses to drought in southwestern Germany since 1800. Reg. Environ. Change 19, 2311–2323 (2019).

  37. Swiss Re The hidden risks of climate change: an increase in property damage from soil subsidence in Europe. PreventionWeb https://www.preventionweb.net/publications/view/20623 (2011).

  38. Formetta, G. & Feyen, L. Empirical evidence of declining global vulnerability to climate-related hazards. Glob. Environ. Change 57, 101920 (2019).

    Article  Google Scholar 

  39. Zhang, H., Li, Y. & Zhu, J.-K. Developing naturally stress-resistant crops for a sustainable agriculture. Nat. Plants 4, 989–996 (2018).

    Article  Google Scholar 

  40. Lohrmann, A., Farfan, J., Caldera, U., Lohrmann, C. & Breyer, C. Global scenarios for significant water use reduction in thermal power plants based on cooling water demand estimation using satellite imagery. Nat. Energy 4, 1040–1048 (2019).

    Article  Google Scholar 

  41. Hallegatte, S., Przyluski, V. & Vogt-Schilb, A. Building world narratives for climate change impact, adaptation and vulnerability analyses. Nat. Clim. Change 1, 151–155 (2011).

    Article  Google Scholar 

  42. Di Baldassarre, G. et al. Water shortages worsened by reservoir effects. Nat. Sustain. 1, 617–622 (2018).

    Article  Google Scholar 

  43. Guerreiro, S. B., Dawson, R. J., Kilsby, C., Lewis, E. & Ford, A. Future heat-waves, droughts and floods in 571 European cities. Environ. Res. Lett. 13, 034009 (2018).

    Article  Google Scholar 

  44. Vetter, T. et al. Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Climatic Change 141, 419–433 (2017).

    Article  CAS  Google Scholar 

  45. Hattermann, F. F. et al. Sources of uncertainty in hydrological climate impact assessment: a cross-scale study. Environ. Res. Lett. 13, 015006 (2018).

    Article  Google Scholar 

  46. Hattermann, F. F. et al. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins. Climatic Change 141, 561–576 (2017).

    Article  Google Scholar 

  47. Addressing the Challenge of Water Scarcity and Droughts in the European Union (European Commission, 2007); https://www.eea.europa.eu/policy-documents/addressing-the-challenge-of-water

  48. Smith, A. B. U.S. Billion-Dollar Weather and Climate Disasters, 1980–Present (NCEI Accession 0209268) (NOAA, 2020); https://doi.org/10.25921/STKW-7W73

  49. Martin-Ortega, J., González-Eguino, M. & Markandya, A. The costs of drought: the 2007/2008 case of Barcelona. Water Policy 14, 539–560 (2012).

    Article  Google Scholar 

  50. Zampieri, M. et al. Climate resilience of the top ten wheat producers in the Mediterranean and the Middle East. Reg. Environ. Change 20, 41 (2020).

    Article  Google Scholar 

  51. Vliet, M. T. H., van, Vögele, S. & Rübbelke, D. Water constraints on European power supply under climate change: impacts on electricity prices. Environ. Res. Lett. 8, 035010 (2013).

    Article  Google Scholar 

  52. Lehner, B., Czisch, G. & Vassolo, S. The impact of global change on the hydropower potential of Europe: a model-based analysis. Energy Policy 33, 839–855 (2005).

    Article  Google Scholar 

  53. Jenkins, K. Indirect economic losses of drought under future projections of climate change: a case study for Spain. Nat. Hazards 69, 1967–1986 (2013).

    Article  Google Scholar 

  54. Gall, M., Borden, K. A. & Cutter, S. L. When do losses count? Six fallacies of natural hazards loss data. Bull. Am. Meteorol. Soc. 90, 799–810 (2009).

    Article  Google Scholar 

  55. Xu, C. et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Change 9, 948–953 (2019).

    Article  CAS  Google Scholar 

  56. Choat, B. et al. Triggers of tree mortality under drought. Nature https://www.nature.com/articles/s41586-018-0240-x (2018).

  57. Seidl, R. et al. Invasive alien pests threaten the carbon stored in Europe’s forests. Nat. Commun. 9, 1626 (2018).

    Article  Google Scholar 

  58. Sutanto, S. J., Vitolo, C., Di Napoli, C., D’Andrea, M. & Van Lanen, H. A. J. Heatwaves, droughts, and fires: exploring compound and cascading dry hazards at the pan-European scale. Environ. Int. 134, 105276 (2020).

    Article  Google Scholar 

  59. de Ruiter, M. C. et al. Why we can no longer ignore consecutive disasters. Earths Future 8, e2019EF001425 (2020).

    Article  Google Scholar 

  60. Ford, T. W. & Labosier, C. F. Meteorological conditions associated with the onset of flash drought in the eastern United States. Agric. For. Meteorol. 247, 414–423 (2017).

    Article  Google Scholar 

  61. Yuan, X., Wang, L. & Wood, E. F. Anthropogenic intensification of southern African flash droughts as exemplified by the 2015/16 season. Bull. Am. Meteorol. Soc. 99, S86–S90 (2018).

    Article  Google Scholar 

  62. Yuan, X., Ma, Z., Pan, M. & Shi, C. Microwave remote sensing of short-term droughts during crop growing seasons. Geophys. Res. Lett. 42, 4394–4401 (2015).

    Article  Google Scholar 

  63. Nguyen, H. et al. Using the evaporative stress index to monitor flash drought in Australia. Environ. Res. Lett. 14, 064016 (2019).

    Article  Google Scholar 

  64. Pendergrass, A. G. et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Change 10, 191–199 (2020).

    Article  Google Scholar 

  65. Hagenlocher, M. et al. Drought vulnerability and risk assessments: state of the art, persistent gaps, and research agenda. Environ. Res. Lett. 14, 083002 (2019).

    Article  Google Scholar 

  66. Jacobs-Crisioni, C. et al. The LUISA Territorial Reference Scenario 2017: A Technical Description (Publications Office of the European Union, 2017); https://ec.europa.eu/jrc/en/publication/luisa-territorial-reference-scenario-2017

  67. Capros, P. et al. GEM-E3 Model Documentation (Publications Office of the European Union, 2013); https://publications.jrc.ec.europa.eu/repository/handle/111111111/32366

  68. Keramidas, K., Kitous, A., Després, J. & Schmitz, A. POLES-JRC Model Documentation (Publications Office of the European Union, 2017); https://publications.jrc.ec.europa.eu/repository/handle/JRC113757

  69. Feyen, L. & Dankers, R. Impact of global warming on streamflow drought in Europe. J. Geophys. Res. Atmos. 114, D17116 (2009).

    Article  Google Scholar 

  70. Tallaksen, L. M. & Van Lanen, H. A. Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater Vol. 48 (Elsevier, 2004).

  71. Lehner, B., Döll, P., Alcamo, J., Henrichs, T. & Kaspar, F. Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Climatic Change 75, 273–299 (2006).

    Article  Google Scholar 

  72. Roudier, P. et al. Projections of future floods and hydrological droughts in Europe under a +2 °C global warming. Climatic Change 135, 341–355 (2016).

    Article  Google Scholar 

  73. Knijff, J. M. V. D., Younis, J. & Roo, A. P. J. D. LISFLOOD: a GIS‐based distributed model for river basin scale water balance and flood simulation. Int. J. Geogr. Inf. Sci. 24, 189–212 (2010).

    Article  Google Scholar 

  74. Salamon, P. et al. EFAS Upgrade for the Extended Model Domain (Publications Office of the European Union, 2019); https://publications.jrc.ec.europa.eu/repository/handle/111111111/55587

  75. Jacob, D. et al. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Change 14, 563–578 (2014).

    Article  Google Scholar 

  76. Knutti, R. et al. Meeting Report. In IPCC Expert Meeting on Assessing and Combining Multi Model Climate Projections (eds Stocker, T. F. et al.) (IPCC, 2010).

  77. Shepherd, T. G. Storyline approach to the construction of regional climate change information. Proc. R. Soc. Lond. A 475, 20190013 (2019).

    Google Scholar 

  78. Mentaschi, L. et al. Independence of future changes of river runoff in Europe from the pathway to global warming. Climate 8, 22 (2020).

    Article  Google Scholar 

  79. Mentaschi, L. et al. The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis. Hydrol. Earth Syst. Sci. 20, 3527–3547 (2016).

    Article  Google Scholar 

  80. Forzieri, G. et al. Resilience of Large Investments and Critical Infrastructures in Europe to Climate Change (Publications Office of the European Union, 2015); https://publications.jrc.ec.europa.eu/repository/handle/111111111/38894

  81. Batista e Silva, F. et al. HARCI-EU, a harmonized gridded dataset of critical infrastructures in Europe for large-scale risk assessments. Sci. Data 6, 126 (2019).

    Article  Google Scholar 

  82. Doornkamp, J. C. Clay shrinkage induced subsidence. Geogr. J. 159, 196–202 (1993).

    Article  Google Scholar 

  83. Boivin, P., Garnier, P. & Tessier, D. Relationship between clay content, clay type, and shrinkage properties of soil samples. Soil Sci. Soc. Am. J. 68, 1145–1153 (2004).

    Article  CAS  Google Scholar 

  84. Hiederer, R. Mapping Soil Properties for Europe—Spatial Representation of Soil Database Attributes (Publications Office of the European Union, 2013); https://publications.jrc.ec.europa.eu/repository/handle/111111111/29170

  85. Crilly, M. Analysis of a database of subsidence damage. Struct. Surv. 19, 7–15 (2001).

    Article  Google Scholar 

  86. Corti, T., Wüest, M., Bresch, D. & Seneviratne, S. I. Drought-induced building damages from simulations at regional scale. Nat. Hazards Earth Syst. Sci. 11, 3335–3342 (2011).

    Article  Google Scholar 

  87. Batista e Silva, F., Lavalle, C. & Koomen, E. A procedure to obtain a refined European land use/cover map. J. Land Use Sci. 8, 255–283 (2013).

    Article  Google Scholar 

  88. Florczyk, A. et al. GHSL Data Package 2019 (Publications Office of the European Union, 2019); https://publications.jrc.ec.europa.eu/repository/handle/111111111/56552

  89. Kron, W., Steuer, M., Löw, P. & Wirtz, A. How to deal properly with a natural catastrophe database—analysis of flood losses. Nat. Hazards Earth Syst. Sci. 12, 535–550 (2012).

  90. Felbermayr, G. & Gröschl, J. Naturally negative: the growth effects of natural disasters. J. Dev. Econ. 111, 92–106 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The research that led to these results received funding from DG CLIMA of the European Commission as part of the ‘PESETAIV-Climate Impacts and Adaptation in Europe’ project (Administrative Agreement JRC 34547–2017 / 340202/2017/763714/SER/CLIMATE.A.3). We further thank Munich Re for providing loss data from the NatCatSERVICE database.

Author information

Authors and Affiliations

Authors

Contributions

The authors co-designed the experiment. L.M. and C.C. conducted the drought hazard analysis; G.N. and L.F. conducted the exposure analysis; G.N., C.C. and L.F. conducted the vulnerability analysis; G.N. and C.C. conducted the impact analysis. G.N. and L.F. interpreted the results and wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Gustavo Naumann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–7 and Tables 1–9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumann, G., Cammalleri, C., Mentaschi, L. et al. Increased economic drought impacts in Europe with anthropogenic warming. Nat. Clim. Chang. 11, 485–491 (2021). https://doi.org/10.1038/s41558-021-01044-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-021-01044-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing