Abstract
Marine low clouds strongly cool the planet. How this cooling effect will respond to climate change is a leading source of uncertainty in climate sensitivity, the planetary warming resulting from CO2 doubling. Here, we observationally constrain this low cloud feedback at a near-global scale. Satellite observations are used to estimate the sensitivity of low clouds to interannual meteorological perturbations. Combined with model predictions of meteorological changes under greenhouse warming, this permits quantification of spatially resolved cloud feedbacks. We predict positive feedbacks from midlatitude low clouds and eastern ocean stratocumulus, nearly unchanged trade cumulus and a near-global marine low cloud feedback of 0.19 ± 0.12 W m−2 K−1 (90% confidence). These constraints imply a moderate climate sensitivity (~3 K). Despite improved midlatitude cloud feedback simulation by several current-generation climate models, their erroneously positive trade cumulus feedbacks produce unrealistically high climate sensitivities. Conversely, models simulating erroneously weak low cloud feedbacks produce unrealistically low climate sensitivities.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Recent global climate feedback controlled by Southern Ocean cooling
Nature Geoscience Open Access 24 August 2023
-
Strong cloud–circulation coupling explains weak trade cumulus feedback
Nature Open Access 30 November 2022
-
Objectively combining climate sensitivity evidence
Climate Dynamics Open Access 19 September 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Data availability
The meteorological cloud radiative kernels applied in this study are freely available for download at https://github.com/tamyers87/meteorological_cloud_radiative_kernels. All data used in this work are freely available for download at https://modis-atmos.gsfc.nasa.gov/MOD06_L2/index.html (MODIS), https://ceres.larc.nasa.gov/data/ (CERES-FBCT61), https://www.ncdc.noaa.gov/isccp/isccp-data-access (ISCCP62), http://climserv.ipsl.polytechnique.fr/gewexca/instruments/PATMOSX.html (PATMOS-x), https://github.com/mzelinka/cloud-radiative-kernels (cloud radiative kernels), https://www.esrl.noaa.gov/psd/data/gridded/ (NOAA OI SST), https://cds.climate.copernicus.eu/cdsapp#!/home (ERA5, ref. 63,64), https://disc.gsfc.nasa.gov/ (MERRA-2, refs. 65,66,67), https://esgf-node.llnl.gov (CMIP5 and CMIP6) and https://data.giss.nasa.gov/clouds/casccad/ (CASCCAD).
Code availability
The MATLAB and Python code used to process and analyse data can be obtained by contacting the corresponding author. The original code from ref. 46 used to produce Fig. 5 is available at https://doi.org/10.5281/zenodo.3945276 (ref. 60).
References
Hartmann, D. L., Ockert-Bell, M. E. & Michelsen, M. L. The effect of cloud type on earth’s energy balance: global analysis. J. Clim. 5, 1281–1304 (1992).
Albrecht, B. A., Jensen, M. P. & Syrett, W. J. Marine boundary layer structure and fractional cloudiness. J. Geophys. Res. Atmos. 100, 14209–14222 (1995).
Norris, J. R. Low cloud type over the ocean from surface observations. Part I: Relationship to surface meteorology and the vertical distribution of temperature and moisture. J. Clim. 11, 369–382 (1998).
Wood, R. & Hartmann, D. L. Spatial variability of liquid water path in marine low cloud: the importance of mesoscale cellular convection. J. Clim. 19, 1748–1764 (2006).
Lilly, D. K. Models of cloud-topped mixed layers under a strong inversion. Q. J. R. Meteorol. Soc. 94, 292–309 (1968).
Bony, S. & Dufresne, J.-L. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett. 32, L20806 (2005).
IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, https://doi.org/10.1029/2019GL085782 (2020).
Stevens, B. & Brenguier, J. L. in Clouds in the Perturbed Climate System (eds Heintzenberg, J. & Charlson, R. J.) 173–196 (2009).
Qu, X., Hall, A., Klein, S. A. & DeAngelis, A. M. Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors. Geophys. Res. Lett. 42, 7767–7775 (2015).
Zhai, C., Jiang, J. H. & Su, H. Long-term cloud change imprinted in seasonal cloud variation: more evidence of high climate sensitivity. Geophys. Res. Lett. 42, 8729–8737 (2015).
Myers, T. A. & Norris, J. R. Reducing the uncertainty in subtropical cloud feedback. Geophys. Res. Lett. 43, 2144–2148 (2016).
Brient, F. & Schneider, T. Constraints on climate sensitivity from space-based measurements of low-cloud reflection. J. Clim. 29, 5821–5835 (2016).
McCoy, D. T., Eastman, R., Hartmann, D. L. & Wood, R. The change in low cloud cover in a warmed climate inferred from AIRS, MODIS, and ERA-Interim. J. Clim. 30, 3609–3620 (2017).
Klein, S. A., Hall, A., Norris, J. R. & Pincus, R. in Shallow Clouds, Water Vapor, Circulation, and Climate Sensitivity (eds Pincus, R. et al.) 135–157 (Springer, 2017).
Scott, R. C. et al. Observed sensitivity of low-cloud radiative effects to meteorological perturbations over the global oceans. J. Clim. 33, 7717–7734 (2020).
Cesana, G. V. & Del Genio, A. D. Observational constraint on cloud feedbacks suggests moderate climate sensitivity. Nat. Clim. Change 11, 213–218 (2021).
Myers, T. A. & Norris, J. R. On the relationships between subtropical clouds and meteorology in observations and CMIP3 and CMIP5 models. J. Clim. 28, 2945–2967 (2015).
Bretherton, C. S. Insights into low-latitude cloud feedbacks from high-resolution models. Philos. Trans. R. Soc. A 373, 20140415 (2015).
Seethala, C., Norris, J. R. & Myers, T. A. How has subtropical stratocumulus and associated meteorology changed since the 1980s? J. Clim. 28, 8396–8410 (2015).
Pincus, R., Platnick, S., Ackerman, S. A., Hemler, R. S. & Hofmann, R. J. P. Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Clim. 25, 4699–4720 (2012).
Eitzen, Z. A. et al. Evaluation of a general circulation model by the CERES Flux‐by‐Cloud Type simulator. J. Geophys. Res. Atmos. 122, 10655–10668 (2017).
Young, A. H., Knapp, K. R., Inamdar, A., Hankins, W. & Rossow, W. B. The International Satellite Cloud Climatology Project H-series climate data record product. Earth Syst. Sci. Data 10, 583–593 (2018).
Heidinger, A. K., Foster, M. J., Walther, A. & Zhao, X. The Pathfinder Atmospheres–Extended AVHRR climate dataset. Bull. Am. Meteorol. Soc. 95, 909–922 (2014).
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Myers, T. A., Mechoso, C. R., Cesana, G. V., DeFlorio, M. J. & Waliser, D. E. Cloud feedback key to marine heatwave off Baja California. Geophys. Res. Lett. 45, 4345–4352 (2018).
Bretherton, C. S., Blossey, P. N. & Jones, C. R. Mechanisms of marine low cloud sensitivity to idealized climate perturbations: a single-LES exploration extending the CGILS cases. J. Adv. Model. Earth Syst. 5, 316–337 (2013).
Rieck, M., Nuijens, L. & Stevens, B. Marine boundary layer cloud feedbacks in a constant relative humidity atmosphere. J. Atmos. Sci. 69, 2538–2550 (2012).
van der Dussen, J., de Roode, S., Dal Gesso, S. & Siebesma, A. P. An LES model study of the influence of the free tropospheric thermodynamic conditions on the stratocumulus response to a climate perturbation. J. Adv. Model. Earth Syst. 7, 670–691 (2015).
Webb, M. J., Lambert, F. H. & Gregory, J. M. Origins of differences in climate sensitivity, forcing and feedback in climate models. Clim. Dyn. 40, 677–707 (2013).
Qu, X., Hall, A., Klein, S. A. & Caldwell, P. M. The strength of the tropical inversion and its response to climate change in 18 CMIP5 models. Clim. Dyn. 45, 375–396 (2015).
Medeiros, B. & Stevens, B. Revealing differences in GCM representations of low clouds. Clim. Dyn. 36, 385–399 (2011).
Cesana, G., Del Genio, A. D. & Chepfer, H. The Cumulus and Stratocumulus CloudSat-CALIPSO Dataset (CASCCAD). Earth Syst. Sci. Data 11, 1745–1764 (2019).
Gordon, N. D. & Klein, S. A. Low-cloud optical depth feedback in climate models. J. Geophys. Res. Atmos. 119, 6052–6065 (2014).
Ceppi, P., Hartmann, D. L. & Webb, M. J. Mechanisms of the negative shortwave cloud feedback in middle to high latitudes. J. Clim. 29, 139–157 (2016).
Ceppi, P., McCoy, D. T. & Hartmann, D. L. Observational evidence for a negative shortwave cloud feedback in middle to high latitudes. Geophys. Res. Lett. 43, 1331–1339 (2016).
Tan, I., Storelvmo, T. & Zelinka, M. D. Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science 352, 224–227 (2016).
Terai, C., Klein, S. A. & Zelinka, M. D. Constraining the low-cloud optical depth feedback at middle and high latitudes using satellite observations. J. Geophys. Res. Atmos. 121, 9696–9716 (2016).
Vogel, R., Nuijens, L. & Stevens, B. The role of precipitation and spatial organization in the response of trade-wind clouds to warming. J. Adv. Model. Earth Syst. 8, 843–862 (2016).
Tan, Z., Schneider, T., Teixeira, J. & Pressel, K. G. Large-eddy simulation of subtropical cloud-topped boundary layers: 2. Cloud response to climate change. J. Adv. Model. Earth Syst. 9, 19–38 (2017).
Radtke, J., Mauritsen, T. & Hohenegger, C. Shallow cumulus cloud feedback in large eddy simulations – bridging the gap to storm-resolving models. Atmos. Chem. Phys. 21, 3275–3288 (2021).
Vial, J., Bony, S., Stevens, B. & Vogel, R. in Shallow Clouds, Water Vapor, Circulation, and Climate Sensitivity (eds Pincus, R. et al.) 159–181 (Springer, 2017).
Bretherton, C. S. & Caldwell, P. M. Combining emergent constraints for climate sensitivity. J. Clim. 33, 7413–7430 (2020).
Webb, M. J. et al. On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Clim. Dyn. 27, 17–38 (2006).
Sherwood, S. C. et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys. 58, e2019RG000678 (2020).
Zhou, C., Zelinka, M. D., Dessler, A. E. & Yang, P. An analysis of the short-term cloud feedback using MODIS data. J. Clim. 26, 4803–4815 (2013).
Stubenrauch, C. J. et al. Assessment of global cloud datasets from satellites: project and database initiated by the GEWEX Radiation Panel. Bull. Am. Meteorol. Soc. 94, 1031–1049 (2013).
Zelinka, M. D., Zhou, C. & Klein, S. A. Insights from a refined decomposition of cloud feedbacks. Geophys. Res. Lett. 43, 9259–9269 (2016).
Garay, M. J., de Szoeke, S. P. & Moroney, C. M. Comparison of marine stratocumulus cloud top heights in the southeastern Pacific retrieved from satellites with coincident ship‐based observations. J. Geophys. Res. Atmos. 113, D18204 (2008).
Zelinka, M. D. et al. Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Clim. 26, 5007–5027 (2013).
ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate (Copernicus Climate Change Service, 2019); https://cds.climate.copernicus.eu/cdsapp#!/home
Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).
Bodas-Salcedo, A. et al. COSP: satellite simulation software for model assessment. Bull. Am. Meteorol. Soc. 92, 1023–1043 (2011).
Zelinka, M. D., Klein, S. A. & Hartmann, D. L. Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernels. J. Clim. 25, 3715–3735 (2012).
Block, K. & Mauritsen, T. Forcing and feedback in the MPI‐ESM‐LR coupled model under abruptly quadrupled CO2. J. Adv. Model. Earth Syst. 5, 676–691 (2013).
Von Storch, H. & Zwiers, F. W. Statistical Analysis in Climate Research (Cambridge Univ. Press, 1999).
Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M. & Bladé, I. The effective number of spatial degrees of freedom of a time-varying field. J. Clim. 12, 1990–2009 (1999).
Webb, M. Code and Data for WCRP Climate Sensitivity Assessment (Zenodo, 2020); https://doi.org/10.5281/zenodo.3945276
CERES Monthly Daytime Mean Regionally Averaged Terra and Aqua TOA Fluxes and Associated Cloud Properties Stratified by Optical Depth and Effective Pressure Edition4A (NASA Atmospheric Science Data Center (ASDC), 2020); https://doi.org/10.5067/Terra-Aqua/CERES/FLUXBYCLDTYP-MONTH_L3.004A
Rossow, W.B. et al. and NOAA’s Climate Data Record Program. International Satellite Cloud Climatology Project (ISCCP) Climate Data Record, H-Series, HGG (NOAA National Centers for Environmental Information, 2016); https://doi.org/10.7289/V5QZ281S
Hersbach, H. et al. ERA5 Monthly Averaged Data on Single Levels from 1979 to Present (Copernicus Climate Change Service, 2019); https://doi.org/10.24381/cds.f17050d7
Hersbach, H. et al. ERA5 Monthly Averaged Data on Pressure Levels from 1979 to Present (Copernicus Climate Change Service, 2019); https://doi.org/10.24381/cds.6860a573
Global Modeling and Assimilation Office (GMAO) MERRA-2 instM_3d_asm_Np: 3d, Monthly Mean, Instantaneous, Pressure-Level, Assimilation, Assimilated Meteorological Fields V5.12.4 (Goddard Earth Sciences Data and Information Services Center (GES DISC), 2015); https://doi.org/10.5067/2E096JV59PK7
Global Modeling and Assimilation Office (GMAO) MERRA-2 tavgM_2d_slv_Nx: 2d, Monthly Mean, Time-Averaged, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4 (Goddard Earth Sciences Data and Information Services Center (GES DISC), 2015); https://doi.org/10.5067/AP1B0BA5PD2K
Global Modeling and Assimilation Office (GMAO) MERRA-2 instM_2d_lfo_Nx: 2d, Monthly Mean, Instantaneous, Single-Level, Assimilation, Land Surface Forcings V5.12.4 (Goddard Earth Sciences Data and Information Services Center (GES DISC), 2015); https://doi.org/10.5067/11F99Y6TXN99
Acknowledgements
T.A.M., M.D.Z., S.A.K. and P.M.C. worked under the auspices of the United States Department of Energy (DOE), Lawrence Livermore National Laboratory under contract no. DE-AC52-07NA27344 and were supported by the Regional and Global Model Analysis Program of the Office of Science at the DOE. This material is based on work done by R.C.S. and J.R.N. that was supported by the National Aeronautics and Space Administration under grant no. 80NSSC18K1020. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. We also thank the Earth System Grid Federation (ESGF) for archiving the model output and providing access, and we thank the multiple funding agencies who support CMIP and ESGF.
Author information
Authors and Affiliations
Contributions
T.A.M. performed the primary analysis and wrote the paper. R.C.S. and M.D.Z. helped process observational data. M.D.Z. helped process CMIP output. M.D.Z. and S.A.K. computed the updated baseline PDF of climate sensitivity. T.A.M., R.C.S., M.D.Z., S.A.K. and J.R.N provided key ideas that shaped the study. P.M.C. computed the posterior PDF of ECS. All authors helped revise the original draft manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Climate Change thanks Pier Siebesma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–19, Tables 1 and 2, Methods and References.
Rights and permissions
About this article
Cite this article
Myers, T.A., Scott, R.C., Zelinka, M.D. et al. Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity. Nat. Clim. Chang. 11, 501–507 (2021). https://doi.org/10.1038/s41558-021-01039-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41558-021-01039-0
This article is cited by
-
Recent global climate feedback controlled by Southern Ocean cooling
Nature Geoscience (2023)
-
Quantifying long-term cloud feedback over East Asia combining with radiative kernels and CMIP6 data
Climate Dynamics (2023)
-
Objectively combining climate sensitivity evidence
Climate Dynamics (2023)
-
The representation of dry-season low-level clouds over Western Equatorial Africa in reanalyses and historical CMIP6 simulations
Climate Dynamics (2023)
-
Detailing cloud property feedbacks with a regime-based decomposition
Climate Dynamics (2023)