Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity


Marine low clouds strongly cool the planet. How this cooling effect will respond to climate change is a leading source of uncertainty in climate sensitivity, the planetary warming resulting from CO2 doubling. Here, we observationally constrain this low cloud feedback at a near-global scale. Satellite observations are used to estimate the sensitivity of low clouds to interannual meteorological perturbations. Combined with model predictions of meteorological changes under greenhouse warming, this permits quantification of spatially resolved cloud feedbacks. We predict positive feedbacks from midlatitude low clouds and eastern ocean stratocumulus, nearly unchanged trade cumulus and a near-global marine low cloud feedback of 0.19 ± 0.12 W m−2 K−1 (90% confidence). These constraints imply a moderate climate sensitivity (~3 K). Despite improved midlatitude cloud feedback simulation by several current-generation climate models, their erroneously positive trade cumulus feedbacks produce unrealistically high climate sensitivities. Conversely, models simulating erroneously weak low cloud feedbacks produce unrealistically low climate sensitivities.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observed and predicted low cloud response during a marine heatwave.
Fig. 2: Marine low cloud feedback constrained by observations and simulated by GCMs.
Fig. 3: Regime-partitioned marine low cloud feedbacks.
Fig. 4: Constraints on low cloud feedback and climate sensitivity.
Fig. 5: Impact on climate sensitivity range derived using multiple lines of evidence.

Data availability

The meteorological cloud radiative kernels applied in this study are freely available for download at All data used in this work are freely available for download at (MODIS), (CERES-FBCT61), (ISCCP62), (PATMOS-x), (cloud radiative kernels), (NOAA OI SST),!/home (ERA5, ref. 63,64), (MERRA-2, refs. 65,66,67), (CMIP5 and CMIP6) and (CASCCAD).

Code availability

The MATLAB and Python code used to process and analyse data can be obtained by contacting the corresponding author. The original code from ref. 46 used to produce Fig. 5 is available at (ref. 60).


  1. Hartmann, D. L., Ockert-Bell, M. E. & Michelsen, M. L. The effect of cloud type on earth’s energy balance: global analysis. J. Clim. 5, 1281–1304 (1992).

    Article  Google Scholar 

  2. Albrecht, B. A., Jensen, M. P. & Syrett, W. J. Marine boundary layer structure and fractional cloudiness. J. Geophys. Res. Atmos. 100, 14209–14222 (1995).

    Article  Google Scholar 

  3. Norris, J. R. Low cloud type over the ocean from surface observations. Part I: Relationship to surface meteorology and the vertical distribution of temperature and moisture. J. Clim. 11, 369–382 (1998).

    Article  Google Scholar 

  4. Wood, R. & Hartmann, D. L. Spatial variability of liquid water path in marine low cloud: the importance of mesoscale cellular convection. J. Clim. 19, 1748–1764 (2006).

    Article  Google Scholar 

  5. Lilly, D. K. Models of cloud-topped mixed layers under a strong inversion. Q. J. R. Meteorol. Soc. 94, 292–309 (1968).

    Article  Google Scholar 

  6. Bony, S. & Dufresne, J.-L. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett. 32, L20806 (2005).

    Article  Google Scholar 

  7. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  8. Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, (2020).

  9. Stevens, B. & Brenguier, J. L. in Clouds in the Perturbed Climate System (eds Heintzenberg, J. & Charlson, R. J.) 173–196 (2009).

  10. Qu, X., Hall, A., Klein, S. A. & DeAngelis, A. M. Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors. Geophys. Res. Lett. 42, 7767–7775 (2015).

    Article  Google Scholar 

  11. Zhai, C., Jiang, J. H. & Su, H. Long-term cloud change imprinted in seasonal cloud variation: more evidence of high climate sensitivity. Geophys. Res. Lett. 42, 8729–8737 (2015).

    Article  Google Scholar 

  12. Myers, T. A. & Norris, J. R. Reducing the uncertainty in subtropical cloud feedback. Geophys. Res. Lett. 43, 2144–2148 (2016).

    Article  Google Scholar 

  13. Brient, F. & Schneider, T. Constraints on climate sensitivity from space-based measurements of low-cloud reflection. J. Clim. 29, 5821–5835 (2016).

    Article  Google Scholar 

  14. McCoy, D. T., Eastman, R., Hartmann, D. L. & Wood, R. The change in low cloud cover in a warmed climate inferred from AIRS, MODIS, and ERA-Interim. J. Clim. 30, 3609–3620 (2017).

    Article  Google Scholar 

  15. Klein, S. A., Hall, A., Norris, J. R. & Pincus, R. in Shallow Clouds, Water Vapor, Circulation, and Climate Sensitivity (eds Pincus, R. et al.) 135–157 (Springer, 2017).

  16. Scott, R. C. et al. Observed sensitivity of low-cloud radiative effects to meteorological perturbations over the global oceans. J. Clim. 33, 7717–7734 (2020).

    Article  Google Scholar 

  17. Cesana, G. V. & Del Genio, A. D. Observational constraint on cloud feedbacks suggests moderate climate sensitivity. Nat. Clim. Change 11, 213–218 (2021).

    Article  Google Scholar 

  18. Myers, T. A. & Norris, J. R. On the relationships between subtropical clouds and meteorology in observations and CMIP3 and CMIP5 models. J. Clim. 28, 2945–2967 (2015).

    Article  Google Scholar 

  19. Bretherton, C. S. Insights into low-latitude cloud feedbacks from high-resolution models. Philos. Trans. R. Soc. A 373, 20140415 (2015).

    Article  Google Scholar 

  20. Seethala, C., Norris, J. R. & Myers, T. A. How has subtropical stratocumulus and associated meteorology changed since the 1980s? J. Clim. 28, 8396–8410 (2015).

    Article  Google Scholar 

  21. Pincus, R., Platnick, S., Ackerman, S. A., Hemler, R. S. & Hofmann, R. J. P. Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Clim. 25, 4699–4720 (2012).

    Article  Google Scholar 

  22. Eitzen, Z. A. et al. Evaluation of a general circulation model by the CERES Flux‐by‐Cloud Type simulator. J. Geophys. Res. Atmos. 122, 10655–10668 (2017).

    Article  Google Scholar 

  23. Young, A. H., Knapp, K. R., Inamdar, A., Hankins, W. & Rossow, W. B. The International Satellite Cloud Climatology Project H-series climate data record product. Earth Syst. Sci. Data 10, 583–593 (2018).

    Article  Google Scholar 

  24. Heidinger, A. K., Foster, M. J., Walther, A. & Zhao, X. The Pathfinder Atmospheres–Extended AVHRR climate dataset. Bull. Am. Meteorol. Soc. 95, 909–922 (2014).

    Article  Google Scholar 

  25. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  26. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  27. Myers, T. A., Mechoso, C. R., Cesana, G. V., DeFlorio, M. J. & Waliser, D. E. Cloud feedback key to marine heatwave off Baja California. Geophys. Res. Lett. 45, 4345–4352 (2018).

    Article  Google Scholar 

  28. Bretherton, C. S., Blossey, P. N. & Jones, C. R. Mechanisms of marine low cloud sensitivity to idealized climate perturbations: a single-LES exploration extending the CGILS cases. J. Adv. Model. Earth Syst. 5, 316–337 (2013).

    Article  Google Scholar 

  29. Rieck, M., Nuijens, L. & Stevens, B. Marine boundary layer cloud feedbacks in a constant relative humidity atmosphere. J. Atmos. Sci. 69, 2538–2550 (2012).

    Article  Google Scholar 

  30. van der Dussen, J., de Roode, S., Dal Gesso, S. & Siebesma, A. P. An LES model study of the influence of the free tropospheric thermodynamic conditions on the stratocumulus response to a climate perturbation. J. Adv. Model. Earth Syst. 7, 670–691 (2015).

    Article  Google Scholar 

  31. Webb, M. J., Lambert, F. H. & Gregory, J. M. Origins of differences in climate sensitivity, forcing and feedback in climate models. Clim. Dyn. 40, 677–707 (2013).

    Article  Google Scholar 

  32. Qu, X., Hall, A., Klein, S. A. & Caldwell, P. M. The strength of the tropical inversion and its response to climate change in 18 CMIP5 models. Clim. Dyn. 45, 375–396 (2015).

    Article  Google Scholar 

  33. Medeiros, B. & Stevens, B. Revealing differences in GCM representations of low clouds. Clim. Dyn. 36, 385–399 (2011).

    Article  Google Scholar 

  34. Cesana, G., Del Genio, A. D. & Chepfer, H. The Cumulus and Stratocumulus CloudSat-CALIPSO Dataset (CASCCAD). Earth Syst. Sci. Data 11, 1745–1764 (2019).

    Article  Google Scholar 

  35. Gordon, N. D. & Klein, S. A. Low-cloud optical depth feedback in climate models. J. Geophys. Res. Atmos. 119, 6052–6065 (2014).

    Article  Google Scholar 

  36. Ceppi, P., Hartmann, D. L. & Webb, M. J. Mechanisms of the negative shortwave cloud feedback in middle to high latitudes. J. Clim. 29, 139–157 (2016).

    Article  Google Scholar 

  37. Ceppi, P., McCoy, D. T. & Hartmann, D. L. Observational evidence for a negative shortwave cloud feedback in middle to high latitudes. Geophys. Res. Lett. 43, 1331–1339 (2016).

    Article  Google Scholar 

  38. Tan, I., Storelvmo, T. & Zelinka, M. D. Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science 352, 224–227 (2016).

    Article  CAS  Google Scholar 

  39. Terai, C., Klein, S. A. & Zelinka, M. D. Constraining the low-cloud optical depth feedback at middle and high latitudes using satellite observations. J. Geophys. Res. Atmos. 121, 9696–9716 (2016).

    Article  Google Scholar 

  40. Vogel, R., Nuijens, L. & Stevens, B. The role of precipitation and spatial organization in the response of trade-wind clouds to warming. J. Adv. Model. Earth Syst. 8, 843–862 (2016).

    Article  Google Scholar 

  41. Tan, Z., Schneider, T., Teixeira, J. & Pressel, K. G. Large-eddy simulation of subtropical cloud-topped boundary layers: 2. Cloud response to climate change. J. Adv. Model. Earth Syst. 9, 19–38 (2017).

    Article  Google Scholar 

  42. Radtke, J., Mauritsen, T. & Hohenegger, C. Shallow cumulus cloud feedback in large eddy simulations – bridging the gap to storm-resolving models. Atmos. Chem. Phys. 21, 3275–3288 (2021).

    Article  CAS  Google Scholar 

  43. Vial, J., Bony, S., Stevens, B. & Vogel, R. in Shallow Clouds, Water Vapor, Circulation, and Climate Sensitivity (eds Pincus, R. et al.) 159–181 (Springer, 2017).

  44. Bretherton, C. S. & Caldwell, P. M. Combining emergent constraints for climate sensitivity. J. Clim. 33, 7413–7430 (2020).

    Article  Google Scholar 

  45. Webb, M. J. et al. On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Clim. Dyn. 27, 17–38 (2006).

    Article  Google Scholar 

  46. Sherwood, S. C. et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys. 58, e2019RG000678 (2020).

    Article  CAS  Google Scholar 

  47. Zhou, C., Zelinka, M. D., Dessler, A. E. & Yang, P. An analysis of the short-term cloud feedback using MODIS data. J. Clim. 26, 4803–4815 (2013).

    Article  Google Scholar 

  48. Stubenrauch, C. J. et al. Assessment of global cloud datasets from satellites: project and database initiated by the GEWEX Radiation Panel. Bull. Am. Meteorol. Soc. 94, 1031–1049 (2013).

    Article  Google Scholar 

  49. Zelinka, M. D., Zhou, C. & Klein, S. A. Insights from a refined decomposition of cloud feedbacks. Geophys. Res. Lett. 43, 9259–9269 (2016).

    Article  Google Scholar 

  50. Garay, M. J., de Szoeke, S. P. & Moroney, C. M. Comparison of marine stratocumulus cloud top heights in the southeastern Pacific retrieved from satellites with coincident ship‐based observations. J. Geophys. Res. Atmos. 113, D18204 (2008).

    Article  Google Scholar 

  51. Zelinka, M. D. et al. Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Clim. 26, 5007–5027 (2013).

    Article  Google Scholar 

  52. ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate (Copernicus Climate Change Service, 2019);!/home

  53. Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Article  Google Scholar 

  54. Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).

    Article  Google Scholar 

  55. Bodas-Salcedo, A. et al. COSP: satellite simulation software for model assessment. Bull. Am. Meteorol. Soc. 92, 1023–1043 (2011).

    Article  Google Scholar 

  56. Zelinka, M. D., Klein, S. A. & Hartmann, D. L. Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernels. J. Clim. 25, 3715–3735 (2012).

    Article  Google Scholar 

  57. Block, K. & Mauritsen, T. Forcing and feedback in the MPI‐ESM‐LR coupled model under abruptly quadrupled CO2. J. Adv. Model. Earth Syst. 5, 676–691 (2013).

    Article  Google Scholar 

  58. Von Storch, H. & Zwiers, F. W. Statistical Analysis in Climate Research (Cambridge Univ. Press, 1999).

  59. Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M. & Bladé, I. The effective number of spatial degrees of freedom of a time-varying field. J. Clim. 12, 1990–2009 (1999).

    Article  Google Scholar 

  60. Webb, M. Code and Data for WCRP Climate Sensitivity Assessment (Zenodo, 2020);

  61. CERES Monthly Daytime Mean Regionally Averaged Terra and Aqua TOA Fluxes and Associated Cloud Properties Stratified by Optical Depth and Effective Pressure Edition4A (NASA Atmospheric Science Data Center (ASDC), 2020);

  62. Rossow, W.B. et al. and NOAA’s Climate Data Record Program. International Satellite Cloud Climatology Project (ISCCP) Climate Data Record, H-Series, HGG (NOAA National Centers for Environmental Information, 2016);

  63. Hersbach, H. et al. ERA5 Monthly Averaged Data on Single Levels from 1979 to Present (Copernicus Climate Change Service, 2019);

  64. Hersbach, H. et al. ERA5 Monthly Averaged Data on Pressure Levels from 1979 to Present (Copernicus Climate Change Service, 2019);

  65. Global Modeling and Assimilation Office (GMAO) MERRA-2 instM_3d_asm_Np: 3d, Monthly Mean, Instantaneous, Pressure-Level, Assimilation, Assimilated Meteorological Fields V5.12.4 (Goddard Earth Sciences Data and Information Services Center (GES DISC), 2015);

  66. Global Modeling and Assimilation Office (GMAO) MERRA-2 tavgM_2d_slv_Nx: 2d, Monthly Mean, Time-Averaged, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4 (Goddard Earth Sciences Data and Information Services Center (GES DISC), 2015);

  67. Global Modeling and Assimilation Office (GMAO) MERRA-2 instM_2d_lfo_Nx: 2d, Monthly Mean, Instantaneous, Single-Level, Assimilation, Land Surface Forcings V5.12.4 (Goddard Earth Sciences Data and Information Services Center (GES DISC), 2015);

Download references


T.A.M., M.D.Z., S.A.K. and P.M.C. worked under the auspices of the United States Department of Energy (DOE), Lawrence Livermore National Laboratory under contract no. DE-AC52-07NA27344 and were supported by the Regional and Global Model Analysis Program of the Office of Science at the DOE. This material is based on work done by R.C.S. and J.R.N. that was supported by the National Aeronautics and Space Administration under grant no. 80NSSC18K1020. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. We also thank the Earth System Grid Federation (ESGF) for archiving the model output and providing access, and we thank the multiple funding agencies who support CMIP and ESGF.

Author information

Authors and Affiliations



T.A.M. performed the primary analysis and wrote the paper. R.C.S. and M.D.Z. helped process observational data. M.D.Z. helped process CMIP output. M.D.Z. and S.A.K. computed the updated baseline PDF of climate sensitivity. T.A.M., R.C.S., M.D.Z., S.A.K. and J.R.N provided key ideas that shaped the study. P.M.C. computed the posterior PDF of ECS. All authors helped revise the original draft manuscript.

Corresponding author

Correspondence to Timothy A. Myers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Pier Siebesma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Tables 1 and 2, Methods and References.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myers, T.A., Scott, R.C., Zelinka, M.D. et al. Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity. Nat. Clim. Chang. 11, 501–507 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing