Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An underestimated negative cloud feedback from cloud lifetime changes

Abstract

As the atmosphere warms, part of the cloud population shifts from ice and mixed-phase (‘cold’) to liquid (‘warm’) clouds. Because warm clouds are more reflective and longer-lived, this phase change reduces the solar flux absorbed by the Earth and constitutes a negative radiative feedback. This cooling feedback is weaker in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) than in the fifth phase (CMIP5), contributing to greater greenhouse warming. Although this change is often attributed to improvements in the simulated cloud phase, another model bias persists: warm clouds precipitate too readily, potentially leading to underestimated negative lifetime feedbacks. In this study we modified a climate model to better simulate warm-rain probability and found that it exhibits a cloud lifetime feedback nearly three times larger than the default model. This suggests that model errors in cloud-precipitation processes may bias cloud feedbacks by as much as the CMIP5-to-CMIP6 climate sensitivity difference. Reliable climate model projections therefore require improved cloud process realism guided by process-oriented observations and observational constraints.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Zonal-mean feedback components.
Fig. 2: Warm-rain fraction fwarm in the ECHAM–HAMMOZ model.
Fig. 3: Zonal-mean warm-rain probability pwarm.

Similar content being viewed by others

Data availability

The summary data files of the model runs used in this article are available at https://doi.org/10.5281/zenodo.4587416.

Code availability

The code that was used to perform model analysis and produce the figures and tables is freely available at https://doi.org/10.5281/zenodo.4603964. The ECHAM–HAMMOZ model code is available at https://hammoz.ethz.ch, subject to acknowledgment of a license; the modifications made for this analysis are freely available at https://doi.org/10.5281/zenodo.4604019.

References

  1. Nordhaus, W. D. & Popp, D. What is the value of scientific knowledge? An application to global warming using the PRICE model. Energy J. 18, 1–45 (1997).

    Article  Google Scholar 

  2. Hope, C. The $10 trillion value of better information about the transient climate response. Philos. Trans. R. Soc. A 373, 20140429 (2015).

    Article  Google Scholar 

  3. Dufresne, J.-L. & Bony, S. An assessment of the primary sources of spread of global warming estimates from coupled atmosphere-ocean models. J. Clim. 21, 5135–5144 (2008).

    Article  Google Scholar 

  4. Vial, J., Dufresne, J.-L. & Bony, S. On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim. Dyn. 41, 3339–3362 (2013).

    Article  Google Scholar 

  5. Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, e2019GL085782 (2020).

    Article  Google Scholar 

  6. Schneider, S. Cloudiness as a global climatic feedback mechanism: the effects on radiation balance and surface-temperature of variations in cloudiness. J. Atmos. Sci. 29, 1413–1422 (1972).

    Article  Google Scholar 

  7. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  8. Gordon, N. D. & Klein, S. A. Low-cloud optical depth feedback in climate models. J. Geophys. Res. 119, 6052–6065 (2014).

    Article  Google Scholar 

  9. Terai, C. R. et al. Mechanisms behind the extratropical stratiform low-cloud optical depth response to temperature in ARM site observations. J. Geophys. Res. 124, 2127–2147 (2019).

    Article  Google Scholar 

  10. Tan, I., Oreopoulos, L. & Cho, N. The role of thermodynamic phase shifts in cloud optical depth variations with temperature. Geophys. Res. Lett. 46, 4502–4511 (2019).

    Article  Google Scholar 

  11. Betts, A. K. & Harshvardhan. Thermodynamic constraint on the cloud liquid water feedback in climate models. J. Geophys. Res. 92, 8483–8485 (1987).

    Article  Google Scholar 

  12. McCoy, D. T., Field, P., Bodas-Salcedo, A., Elsaesser, G. S. & Zelinka, M. D. A regime-oriented approach to observationally constraining extratropical shortwave cloud feedbacks. J. Clim. 33, 9967–9983 (2020).

    Article  Google Scholar 

  13. Tselioudis, G., Rossow, W. & Rind, D. Global patterns of cloud optical-thickness variation with temperature. J. Clim. 5, 1484–1497 (1992).

    Article  Google Scholar 

  14. Myers, T. A. et al. Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01039-0 (2021).

  15. Mitchell, J., Senior, C. & Ingram, W. CO2 and climate: a missing feedback? Nature 341, 132–134 (1989).

    Article  Google Scholar 

  16. Tsushima, Y. et al. Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: a multi-model study. Clim. Dyn. 27, 113–126 (2006).

    Article  Google Scholar 

  17. Senior, C. & Mitchell, J. Carbon-dioxide and climate. The impact of cloud parameterization. J. Clim. 6, 393–418 (1993).

    Article  Google Scholar 

  18. Hoose, C., Lohmann, U., Bennartz, R., Croft, B. & Lesins, G. Global simulations of aerosol processing in clouds. Atmos. Chem. Phys. 8, 6939–6963 (2008).

    Article  CAS  Google Scholar 

  19. Albrecht, B. A. Aerosols, cloud microphysics, and fractional cloudiness. Science 245, 1227–1230 (1989).

    Article  CAS  Google Scholar 

  20. Stevens, B. & Feingold, G. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461, 607–613 (2009).

    Article  CAS  Google Scholar 

  21. Bodas-Salcedo, A., Williams, K. D., Field, P. R. & Lock, A. P. The surface downwelling solar radiation surplus over the Southern Ocean in the Met Office model: the role of midlatitude cyclone clouds. J. Clim. 25, 7467–7486 (2012).

    Article  Google Scholar 

  22. Cesana, G. & Chepfer, H. Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO-GOCCP. J. Geophys. Res. 118, 7922–7937 (2013).

    Article  Google Scholar 

  23. Bodas-Salcedo, A. et al. Origins of the solar radiation biases over the southern ocean in CFMIP2 models. J. Clim. 27, 41–56 (2014).

    Article  Google Scholar 

  24. Komurcu, M. et al. Intercomparison of the cloud water phase among global climate models. J. Geophys. Res. 119, 3372–3400 (2014).

    Article  Google Scholar 

  25. Cesana, G., Waliser, D. E., Jiang, X. & Li, J.-L. F. Multimodel evaluation of cloud phase transition using satellite and reanalysis data. J. Geophys. Res. 120, 7871–7892 (2015).

    Article  Google Scholar 

  26. Kay, J. E. et al. Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations. J. Geophys. Res. 121, 4162–4176 (2016).

    Article  Google Scholar 

  27. Bodas-Salcedo, A. et al. Large contribution of supercooled liquid clouds to the solar radiation budget of the Southern Ocean. J. Clim. 29, 4213–4228 (2016).

    Article  Google Scholar 

  28. Tan, I., Storelvmo, T. & Zelinka, M. D. Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science 352, 224–227 (2016).

    Article  CAS  Google Scholar 

  29. Bodas-Salcedo, A., Andrews, T., Karmalkar, A. V. & Ringer, M. A. Cloud liquid water path and radiative feedbacks over the Southern Ocean. Geophys. Res. Lett. 43, 10938–10946 (2016).

    Article  Google Scholar 

  30. Terai, C. R., Klein, S. A. & Zelinka, M. D. Constraining the low-cloud optical depth feedback at middle and high latitudes using satellite observations. J. Geophys. Res. 121, 9696–9716 (2016).

    Article  Google Scholar 

  31. Frey, W. R. & Kay, J. E. The influence of extratropical cloud phase and amount feedbacks on climate sensitivity. Clim. Dyn. 50, 3097–3116 (2018).

    Article  Google Scholar 

  32. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  33. Cess, R. & Potter, G. A methodology for understanding and intercomparing atmospheric climate feedback processes in general circulation models. J. Geophys. Res. 93, 8305–8314 (1988).

    Article  Google Scholar 

  34. Neubauer, D., Lohmann, U., Hoose, C. & Frontoso, M. G. Impact of the representation of marine stratocumulus clouds on the anthropogenic aerosol effect. Atmos. Chem. Phys. 14, 11997–12022 (2014).

    Article  Google Scholar 

  35. Wetherald, R. & Manabe, S. Cloud feedback processes in a general circulation model. J. Atmos. Sci. 45, 1397–1415 (1988).

    Article  Google Scholar 

  36. Colman, R. A. & McAvaney, B. J. A study of general circulation model climate feedbacks determined from perturbed sea surface temperature experiments. J. Geophys. Res. 102, 19383–19402 (1997).

    Article  Google Scholar 

  37. Colman, R. A comparison of climate feedbacks in general circulation models. Clim. Dyn. 20, 865–873 (2003).

    Article  Google Scholar 

  38. Klocke, D., Quaas, J. & Stevens, B. Assessment of different metrics for physical climate feedbacks. Clim. Dyn. 41, 1173–1185 (2013).

    Article  Google Scholar 

  39. Mülmenstädt, J. et al. Separating radiative forcing by aerosol–cloud interactions and fast cloud adjustments in the ECHAM–HAMMOZ aerosol–climate model using the method of partial radiative perturbations. Atmos. Chem. Phys. 19, 15415–15429 (2019).

    Article  Google Scholar 

  40. Mülmenstädt, J., Sourdeval, O., Delanoë, J. & Quaas, J. Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals. Geophys. Res. Lett. 42, 6502–6509 (2015).

    Article  Google Scholar 

  41. Field, P. R. & Heymsfield, A. J. Importance of snow to global precipitation. Geophys. Res. Lett. 42, 9512–9520 (2015).

    Article  Google Scholar 

  42. Stephens, G. L. et al. Dreary state of precipitation in global models. J. Geophys. Res. 115, D24211 (2010).

    Google Scholar 

  43. Suzuki, K. et al. Evaluation of the warm rain formation process in global models with satellite observations. J. Atmos. Sci. 72, 3996–4014 (2015).

    Article  Google Scholar 

  44. Jing, X. et al. A multimodel study on warm precipitation biases in global models compared to satellite observations. J. Geophys. Res. 122, 11806–11824 (2017).

    Article  Google Scholar 

  45. Kay, J. E. et al. Scale-aware and definition-aware evaluation of modeled near-surface precipitation frequency using CloudSat observations. J. Geophys. Res. 123, 4294–4309 (2018).

    Article  Google Scholar 

  46. Golaz, J.-C. et al. Sensitivity of the aerosol indirect effect to subgrid variability in the cloud parameterization of the GFDL atmosphere general circulation model AM3. J. Clim. 24, 3145–3160 (2011).

    Article  Google Scholar 

  47. Michibata, T., Suzuki, K., Ogura, T. & Jing, X. Incorporation of inline warm rain diagnostics into the COSP2 satellite simulator for process-oriented model evaluation. Geosci. Model Dev. 12, 4297–4307 (2019).

    Article  Google Scholar 

  48. Webb, M. J. et al. The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6. Geosci. Model Dev. 10, 359–384 (2017).

    Article  CAS  Google Scholar 

  49. Tsushima, Y., Ringer, M. A., Martin, G. M., Rostron, J. W. & Sexton, D. M. H. Investigating physical constraints on climate feedbacks using a perturbed parameter ensemble. Clim. Dyn. 55, 1159–1185 (2020).

    Article  Google Scholar 

  50. von Bertalanffy, L. The theory of open systems in physics and biology. Science 111, 23–29 (1950).

    Article  Google Scholar 

  51. Beven, K. & Freer, J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J. Hydrol. 249, 11–29 (2001).

    Article  Google Scholar 

  52. Lee, L. A., Reddington, C. L. & Carslaw, K. S. On the relationship between aerosol model uncertainty and radiative forcing uncertainty. Proc. Natl Acad. Sci. USA 113, 5820–5827 (2016).

    Article  CAS  Google Scholar 

  53. Regayre, L. A. et al. Aerosol and physical atmosphere model parameters are both important sources of uncertainty in aerosol ERF. Atmos. Chem. Phys. 18, 9975–10006 (2018).

    Article  Google Scholar 

  54. Mülmenstädt, J. et al. Reducing the aerosol forcing uncertainty using observational constraints on warm rain processes. Sci. Adv. 6, eaaz6433 (2020).

    Article  Google Scholar 

  55. Chubb, T. H., Jensen, J. B., Siems, S. T. & Manton, M. J. In situ observations of supercooled liquid clouds over the Southern Ocean during the HIAPER pole-to-pole observation campaigns. Geophys. Res. Lett. 40, 5280–5285 (2013).

    Article  Google Scholar 

  56. Mace, G. G. & Protat, A. Clouds over the Southern Ocean as observed from the R/V Investigator during CAPRICORN. Part I: cloud occurrence and phase partitioning. J. Appl. Meteorol. Climatol. 57, 1783–1803 (2018).

    Article  Google Scholar 

  57. Mace, G. G. & Protat, A. Clouds over the Southern Ocean as observed from the R/V Investigator during CAPRICORN. Part II: the properties of nonprecipitating stratocumulus. J. Appl. Meteorol. Climatol. 57, 1805–1823 (2018).

    Article  Google Scholar 

  58. National Academies of Sciences, Engineering, and Medicine Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space (The National Academies Press, 2018); https://doi.org/10.17226/24938

  59. Thayer-Calder, K. et al. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model. Geosci. Model Dev. 8, 3801–3821 (2015).

    Article  Google Scholar 

  60. Song, H., Zhang, Z., Ma, P.-L., Ghan, S. & Wang, M. The importance of considering sub-grid cloud variability when using satellite observations to evaluate the cloud and precipitation simulations in climate models. Geosci. Model Dev. 11, 3147–3158 (2018).

    Article  Google Scholar 

  61. Ceppi, P., Hartmann, D. L. & Webb, M. J. Mechanisms of the negative shortwave cloud feedback in middle to high latitudes. J. Clim. 29, 139–157 (2016).

    Article  Google Scholar 

  62. Bodas-Salcedo, A. et al. Strong dependence of atmospheric feedbacks on mixed-phase microphysics and aerosol-cloud interactions in HadGEM3. J. Adv. Model. Earth Syst. 11, 1735–1758 (2019).

    Article  CAS  Google Scholar 

  63. Gettelman, A. et al. High climate sensitivity in the Community Earth System Model Version 2 (CESM2). Geophys. Res. Lett. 46, 8329–8337 (2019).

    Article  Google Scholar 

  64. Christensen, M. W., Suzuki, K., Zambri, B. & Stephens, G. L. Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds. Geophys. Res. Lett. 41, 6970–6977 (2014).

    Article  Google Scholar 

  65. McCoy, D. T. et al. Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo. Sci. Adv. 1, e1500157 (2015).

    Article  Google Scholar 

  66. McCluskey, C. S. et al. Observations of ice nucleating particles over Southern Ocean waters. Geophys. Res. Lett. 45, 11989–11997 (2018).

    Article  Google Scholar 

  67. Vergara-Temprado, J. et al. Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles. Proc. Natl Acad. Sci. USA 115, 2687–2692 (2018).

    Article  CAS  Google Scholar 

  68. McCoy, I. L. et al. The hemispheric contrast in cloud microphysical properties constrains aerosol forcing. Proc. Natl Acad. Sci. USA 117, 18998–19006 (2020).

    Article  CAS  Google Scholar 

  69. Stephens, G. et al. CloudSat and CALIPSO within the A-Train: ten years of actively observing the earth system. Bull. Am. Meteorol. Soc. 99, 569–581 (2018).

    Article  Google Scholar 

  70. Stevens, B. et al. Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst. 5, 146–172 (2013).

    Article  Google Scholar 

  71. Raddatz, T. J. et al. Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century? Clim. Dyn. 29, 565–574 (2007).

    Article  Google Scholar 

  72. Stier, P. et al. The aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys. 5, 1125–1156 (2005).

    Article  CAS  Google Scholar 

  73. Zhang, K. et al. The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations. Atmos. Chem. Phys. 12, 8911–8949 (2012).

    Article  CAS  Google Scholar 

  74. Kinnison, D. E. et al. Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. J. Geophys. Res. 112, D20302 (2007).

    Article  Google Scholar 

  75. Lohmann, U. & Roeckner, E. Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Clim. Dyn. 12, 557–572 (1996).

    Article  Google Scholar 

  76. Lohmann, U. et al. Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmos. Chem. Phys. 7, 3425–3446 (2007).

    Article  CAS  Google Scholar 

  77. Lohmann, U. & Hoose, C. Sensitivity studies of different aerosol indirect effects in mixed-phase clouds. Atmos. Chem. Phys. 9, 8917–8934 (2009).

    Article  CAS  Google Scholar 

  78. Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather Rev. 117, 1779–1800 (1989).

    Article  Google Scholar 

  79. Khairoutdinov, M. & Kogan, Y. A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Weather Rev. 128, 229–243 (2000).

    Article  Google Scholar 

  80. Rotstayn, L. D. On the ‘tuning’ of autoconversion parameterizations in climate models. J. Geophys. Res. 105, 15495–15507 (2000).

    Article  Google Scholar 

  81. Weber, T. & Quaas, J. Incorporating the subgrid-scale variability of clouds in the autoconversion parameterization using a PDF-scheme. J. Adv. Model. Earth Syst. 4, M11003 (2012).

    Article  Google Scholar 

  82. Lebsock, M., Morrison, H. & Gettelman, A. Microphysical implications of cloud-precipitation covariance derived from satellite remote sensing. J. Geophys. Res. 118, 6521–6533 (2013).

    Article  Google Scholar 

  83. Boutle, I. A., Abel, S. J., Hill, P. G. & Morcrette, C. J. Spatial variability of liquid cloud and rain: observations and microphysical effects. Q. J. R. Meteorol. Soc. 140, 583–594 (2014).

    Article  Google Scholar 

  84. Zhang, Z. et al. Subgrid variations of the cloud water and droplet number concentration over the tropical ocean: satellite observations and implications for warm rain simulations in climate models. Atmos. Chem. Phys. 19, 1077–1096 (2019).

    Article  CAS  Google Scholar 

  85. Gates, W. AMIP: the Atmospheric Model Intercomparison Project. Bull. Am. Meteorol. Soc. 73, 1962–1970 (1992).

    Article  Google Scholar 

  86. Gates, W. L. et al. An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Am. Meteorol. Soc. 80, 29–55 (1999).

    Article  Google Scholar 

  87. Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M. & Rosinski, J. A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Clim. 21, 5145–5153 (2008).

    Article  Google Scholar 

  88. Bodas-Salcedo, A. et al. COSP: satellite simulation software for model assessment. Bull. Am. Meteorol. Soc. 92, 1023–1043 (2011).

    Article  Google Scholar 

  89. Nam, C. C. W. & Quaas, J. Evaluation of clouds and precipitation in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data. J. Clim. 25, 4975–4992 (2012).

    Article  Google Scholar 

  90. Haynes, J. M., Marchand, R. T., Luo, Z., Bodas-Salcedo, A. & Stephens, G. L. A multipurpose radar simulation package: QuickBeam. Bull. Am. Meteorol. Soc. 88, 1723–1728 (2007).

    Article  Google Scholar 

  91. Cleveland, W. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979).

    Article  Google Scholar 

  92. Michibata, T., Suzuki, K. & Takemura, T. Snow-induced buffering in aerosol–cloud interactions. Atmos. Chem. Phys. 20, 13771–13780 (2020).

    Article  CAS  Google Scholar 

  93. Gettelman, A., Morrison, H., Terai, C. R. & Wood, R. Microphysical process rates and global aerosol–cloud interactions. Atmos. Chem. Phys. 13, 9855–9867 (2013).

    Article  Google Scholar 

  94. Lohmann, U. & Neubauer, D. The importance of mixed-phase and ice clouds for climate sensitivity in the global aerosol–climate model ECHAM6-HAM2. Atmos. Chem. Phys. 18, 8807–8828 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Bretherton, S. Burrows, S. Klein, J. Mace, D. McCoy, I. McCoy, C. Sackmann, I. Tan, R. Wood and three reviewers for their comments. The ECHAM–HAMMOZ model was developed by a consortium composed of ETH Zurich, Max Planck Institut für Meteorologie, Forschungszentrum Jülich, University of Oxford, the Finnish Meteorological Institute and the Leibniz Institute for Tropospheric Research, and managed by the Center for Climate Systems Modeling (C2SM) at ETH Zurich. Computing resources were provided by Deutsches Klimarechenzentrum (DKRZ). Ice water path data were provided by F. Li. The GPCP data were provided by the NOAA/OAR/ESRL PSL, Boulder, CO, USA, from their web site at https://psl.noaa.gov/. The public domain map data were provided by https://naturalearthdata.com. J.M. and J.Q. were supported by European Research Council (ERC) project ‘QUAERERE’, grant agreement 306284. J.M. and P.-L.M. were supported by the US Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research, Regional and Global Model Analysis Program. P.-L.M. was supported by the Leibniz Invitations program at Universität Leipzig. J.E.K. was supported by NSF CAREER AGS 1554659 and NASA Award 80NSSC20K0133. The work of M.D.Z. was supported by the US DOE Regional and Global Model Analysis Program and was performed under the auspices of the US DOE under Contract DE-AC52-07NA27344. The work of J.Q. was supported by the European Union through its Horizon 2020 projects CONSTRAIN (GA 820829) and FORCeS (GA 821205). The Pacific Northwest National Laboratory is operated on behalf of the US DOE by the Battelle Memorial Institute under contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Contributions

J.M., M.S., J.E.K. and P.-L.M. designed the study; M.D.Z. provided multimodel-mean results; C.N., M.S., J.K. and J.M. implemented COSP into ECHAM–HAMMOZ; J.M. and S.H. performed the simulations; all authors contributed to the interpretation of the model results; J.M. drafted the manuscript with contributions from all authors.

Corresponding author

Correspondence to Johannes Mülmenstädt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Graeme Stephens, Yoko Tsushima and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Tables 1–4 and references appearing only in the Supplementary Information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mülmenstädt, J., Salzmann, M., Kay, J.E. et al. An underestimated negative cloud feedback from cloud lifetime changes. Nat. Clim. Chang. 11, 508–513 (2021). https://doi.org/10.1038/s41558-021-01038-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-021-01038-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing