Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global changes in oceanic mesoscale currents over the satellite altimetry record

Abstract

Oceanic mesoscale eddies play a profound role in mixing tracers such as heat, carbon and nutrients, thereby regulating regional and global climate. Yet, it remains unclear how the eddy field has varied over the past few decades. Furthermore, climate model predictions generally do not resolve mesoscale eddies, which could limit their accuracy in simulating future climate change. Here we show a global statistically significant increase of ocean eddy activity using two independent observational datasets of surface mesoscale eddy variability (one estimates surface currents, and the other is derived from sea surface temperature). Maps of mesoscale variability trends show heterogeneous patterns, with eddy-rich regions showing a significant increase in mesoscale variability of 2–5% per decade, while the tropical oceans show a decrease in mesoscale variability. This readjustment of the surface mesoscale ocean circulation has important implications for the exchange of heat and carbon between the ocean and atmosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SSH trend, mean surface EKE and surface EKE trend between 1993 and 2020.
Fig. 2: SST trends, mean SST gradient magnitude and SST gradient magnitude trends between 1993 and 2020.
Fig. 3: Regional maps of mesoscale SST gradient magnitude trends and surface EKE trends.
Fig. 4: Time-series and linear trends of area-integrated surface EKE and mesoscale SST gradient magnitudes over various ocean basins.
Fig. 5: Time-series and linear trends of integrated surface EKE and mesoscale SST gradient magnitudes over dynamical regions.

Similar content being viewed by others

Data availability

The unprocessed data from the satellite altimetry (produced by Ssalto/Duacs and distributed by EU CMEMS) can be found at https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047. The processed data used in this study are publicly available in netCDF format at https://doi.org/10.5281/zenodo.3993823 (ref. 50).

Code availability

All analyses and figures in this manuscript are reproducible via Jupyter notebooks and instructions found in the Github repository EKE_SST_trends51 (https://doi.org/10.5281/zenodo.4458783). The analyses use the Python package xarrayMannKendall52 (https://doi.org/10.5281/zenodo.4458776).

References

  1. Pörtner, H. et al. (eds) Special Report on the Ocean and Cryosphere in a Changing Climate (IPCC, 2019).

  2. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  3. Marshall, J., Scott, J. R., Romanou, A., Kelley, M. & Leboissetier, A. The dependence of the ocean’s MOC on mesoscale eddy diffusivities: a model study. Ocean Model. 111, 1–8 (2017).

    Article  Google Scholar 

  4. Toggweiler, J. R. & Russell, J. Ocean circulation in a warming climate. Nature 451, 286–288 (2008).

    Article  CAS  Google Scholar 

  5. Yang, H. et al. Poleward shift of the major ocean gyres detected in a warming climate. Geophys. Res. Lett. 47, e2019GL085868 (2020).

    Article  Google Scholar 

  6. Sutton, R. T. & Hodson, D. L. R. Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Clim. 20, 891–907 (2007).

    Article  Google Scholar 

  7. Wu, L. et al. Enhanced warming over the global subtropical western boundary currents. Nat. Clim. Change 2, 161–166 (2012).

    Article  CAS  Google Scholar 

  8. Kwon, Y.-O. et al. Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere-ocean interaction: a review. J. Clim. 23, 3249–3281 (2010).

    Article  Google Scholar 

  9. Hogg, A. M. et al. Recent trends in the Southern Ocean eddy field. J. Geophys. Res. Oceans 120, 257–267 (2015).

    Article  Google Scholar 

  10. Radko, T. & Marshall, J. Eddy-induced diapycnal fluxes and their role in the maintenance of the thermocline. J. Phys. Oceanogr. 34, 372–383 (2004).

    Article  Google Scholar 

  11. Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J. & Samelson, R. M. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 334, 328–332 (2011).

    Article  CAS  Google Scholar 

  12. Early, J. J., Samelson, R. M. & Chelton, D. B. The evolution and propagation of quasigeostrophic ocean eddies. J. Phys. Oceanogr. 41, 1535–1555 (2011).

    Article  Google Scholar 

  13. Meredith, M. P., Garabato, A. C., Hogg, A. M. & Farneti, R. Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. J. Clim. 25, 99–110 (2012).

    Article  Google Scholar 

  14. Busecke, J. J. M. & Abernathey, R. P. Ocean mesoscale mixing linked to climate variability. Sci. Adv. 5, eaav5014 (2019).

    Article  Google Scholar 

  15. Hu, S. et al. Deep-reaching acceleration of global mean ocean circulation over the past two decades. Sci. Adv. 6, eaax7727 (2020).

    Article  Google Scholar 

  16. Wyrtki, K., Magaard, L. & Hager, J. Eddy energy in the oceans. J. Geophys. Res. 81, 2641–2646 (1976).

    Article  Google Scholar 

  17. Chelton, D. B., Schlax, M. G., Samelson, R. M. & de Szoeke, R. A. Global observations of large oceanic eddies. Geophys. Res. Lett. 34, L15606 (2007).

    Article  Google Scholar 

  18. Wunsch, C. Is the ocean speeding up? Ocean surface energy trends. J. Phys. Oceanogr. 50, 3205–3217 (2020).

    Article  Google Scholar 

  19. Patara, L., Böning, C. W. & Biastoch, A. Variability and trends in Southern Ocean eddy activity in 1/12° ocean model simulations. Geophys. Res. Lett. 43, 4517–4523 (2016).

    Article  Google Scholar 

  20. Martínez-Moreno, J., Hogg, A. M., Kiss, A. E., Constantinou, N. C. & Morrison, A. K. Kinetic energy of eddy-like features from sea surface altimetry. J. Adv. Model. Earth Syst. 11, 3090–3105 (2019).

    Article  Google Scholar 

  21. Ding, M., Lin, P., Liu, H. & Chai, F. Increased eddy activity in the northeastern Pacific during 1993–2011. J. Clim. 31, 387–399 (2017).

    Article  Google Scholar 

  22. Yuan, Y. & Castelao, R. M. Eddy-induced sea surface temperature gradients in eastern boundary current systems. J. Geophys. Res. Oceans 122, 4791–4801 (2017).

    Article  Google Scholar 

  23. Castellani, M. Identification of eddies from sea surface temperature maps with neural networks. Int. J. Remote Sens. 27, 1601–1618 (2006).

    Article  Google Scholar 

  24. Holladay, C. G. & O’Brien, J. J. Mesoscale variability of sea surface temperatures. J. Phys. Oceanogr. 5, 761–772 (1975).

    Article  Google Scholar 

  25. Banzon, V., Smith, T. M., Steele, M., Huang, B. & Zhang, H.-M. Improved estimation of proxy sea surface temperature in the Arctic. J. Atmos. Ocean. Technol. 37, 341–349 (2020).

    Article  Google Scholar 

  26. Yue, S. & Wang, C. The Mann–Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Res. Manage. 18, 201–218 (2004).

    Article  Google Scholar 

  27. Polito, P. S. & Sato, O. T. Global interannual trends and amplitude modulations of the sea surface height anomaly from the TOPEX/Jason-1 altimeters. J. Clim. 21, 2824–2834 (2008).

    Article  Google Scholar 

  28. Cane, M. A. et al. Twentieth-century sea surface temperature trends. Science 275, 957–960 (1997).

    Article  CAS  Google Scholar 

  29. Ruela, R., Sousa, M. C., deCastro, M. & Dias, J. M. Global and regional evolution of sea surface temperature under climate change. Glob. Planet. Change 190, 103190 (2020).

    Article  Google Scholar 

  30. Johnson, G. C., McPhaden, M. J., Rowe, G. D. & McTaggart, K. E. Upper equatorial Pacific Ocean current and salinity variability during the 1996–1998 Niño–La Niña cycle. J. Geophys. Res. Oceans 105, 1037–1053 (2000).

    Article  Google Scholar 

  31. McPhaden, M. J. The child prodigy of 1997–98. Nature 398, 559–561 (1999).

    Article  CAS  Google Scholar 

  32. Wang, L.-C. & Wu, C.-R. Contrasting the flow patterns in the equatorial Pacific between two types of El Niño. Atmos. Ocean 51, 60–74 (2013).

    Article  Google Scholar 

  33. Ezer, T., Atkinson, L. P., Corlett, W. B. & Blanco, J. L. Gulf Stream’s induced sea level rise and variability along the U.S. mid-Atlantic coast: Gulf Stream induces coastal sea level rise. J. Geophys. Res. Oceans 118, 685–697 (2013).

    Article  Google Scholar 

  34. Uchida, H. & Imawaki, S. Estimation of the sea level trend south of Japan by combining satellite altimeter data with in situ hydrographic data. J. Geophys. Res. 113, C09035 (2008).

    Google Scholar 

  35. Wu, B., Lin, X. & Yu, L. Poleward shift of the Kuroshio extension front and its impact on the North Pacific subtropical mode water in the recent decades. J. Phys. Oceanogr. 51, 457–474 (2021).

    Article  Google Scholar 

  36. Yang, H. et al. Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. Oceans 121, 4928–4945 (2016).

    Article  Google Scholar 

  37. Piecuch, C. G. Likely weakening of the Florida Current during the past century revealed by sea-level observations. Nat. Commun. 11, 3973 (2020).

    Article  CAS  Google Scholar 

  38. Saenko, O. A., Fyfe, J. C. & England, M. H. On the response of the oceanic wind-driven circulation to atmospheric CO2 increase. Clim. Dyn. 25, 415–426 (2005).

    Article  Google Scholar 

  39. Sen Gupta, A. et al. Projected changes to the Southern Hemisphere ocean and sea ice in the IPCC AR4 climate models. J. Clim. 22, 3047–3078 (2009).

    Article  Google Scholar 

  40. Seidel, D. J., Fu, Q., Randel, W. J. & Reichler, T. J. Widening of the tropical belt in a changing climate. Nat. Geosci. 1, 21–24 (2007).

    Article  Google Scholar 

  41. Sanchez de La Lama, M., LaCasce, J. H. & Fuhr, H. K. The vertical structure of ocean eddies. Dyn. Stat. Clim. Syst. 1, dzw001 (2016).

    Google Scholar 

  42. Wunsch, C. & Ferrari, R. Vertical mixing, energy and the general circulation of oceans. Annu. Rev. Fluid Mech. 36, 281–314 (2004).

    Article  Google Scholar 

  43. Foppert, A., Donohue, K., Watts, D. & Tracey, K. Eddy heat flux across the Antarctic Circumpolar Current estimated from sea surface height standard deviation. J. Geophys. Res. Oceans 122, 6947–6964 (2017).

    Article  Google Scholar 

  44. Gnanadesikan, A., Pradal, M.-A. & Abernathey, R. Isopycnal mixing by mesoscale eddies significantly impacts oceanic anthropogenic carbon uptake. Geophys. Res. Lett. 42, 4249–4255 (2015).

    Article  CAS  Google Scholar 

  45. Abram, N. J. et al. Evolution of the Southern Annular Mode during the past millennium. Nat. Clim. Change 4, 564–569 (2014).

    Article  CAS  Google Scholar 

  46. Gillett, N. P. & Fyfe, J. C. Annular mode changes in the CMIP5 simulations. Geophys. Res. Lett. 40, 1189–1193 (2013).

    Article  Google Scholar 

  47. Haarsma, R. J. et al. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev. 9, 4185–4208 (2016).

    Article  Google Scholar 

  48. Wolter, K. & Timlin, M. S. Measuring the strength of ENSO events: how does 1997/98 rank? Weather 53, 315–324 (1998).

    Article  Google Scholar 

  49. Lagerloef, G. S. E., Mitchum, G. T., Lukas, R. B. & Niiler, P. P. Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data. J. Geophys. Res. Oceans 104, 23313–23326 (1999).

    Article  Google Scholar 

  50. Martínez-Moreno, J. et al. Eddy kinetic energy and SST gradients global datasets and trends. Additionally, this dataset includes ocean basins and ocean processes masks. Zenodo https://doi.org/10.5281/zenodo.3993823 (2021).

  51. Martínez-Moreno, J. & Constantinou, N. C. josuemtzmo/EKE_SST_trends: EKE_SST_trends: Jupyter notebooks (Python) used to compute trends of eddy kinetic energy and sea surface temperature. Zenodo https://doi.org/10.5281/zenodo.4458783 (2021).

  52. Martínez-Moreno, J. & Constantinou, N. C. josuemtzmo/xarrayMannKendall: Mann Kendall significance test implemented in xarray. Zenodo https://doi.org/10.5281/zenodo.4458776 (2021).

Download references

Acknowledgements

We thank R. Holmes for clarifying the equatorial response of El Niño events during 1997–1998 and 2015–2016. The satellite altimetry products were produced by Ssalto/Duacs and distributed by CMEMS (https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047). J.M.-M. was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico. M.H.E. was supported by the Centre for Southern Hemisphere Oceans Research (CSHOR), a joint research centre between Qingdao National Laboratory for Marine Science and Technology (QNLM), Commonwealth Scientific and Industrial Research Organisation (CSIRO), the University of New South Wales (UNSW) and the University of Tasmania (UTAS). A.K.M. was supported by the Australian Research Council DECRA Fellowship no. DE170100184. The analyses were undertaken on the National Computational Infrastructure in Canberra, Australia, which is supported by the Australian Commonwealth Government.

Author information

Authors and Affiliations

Authors

Contributions

J.M.-M., A.McC.H. and M.H.E. conceived the study. J.M.-M. conducted the analyses. All authors contributed to the interpretation of the results and to the writing and revision of the manuscript.

Corresponding author

Correspondence to Josué Martínez-Moreno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Sophia Moreton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Regions of statistically significant trends of a, sea surface height; b, surface eddy kinetic energy; c, sea surface temperature; d, sea surface temperature gradient magnitude.

As per figs. 1b, f, 2b, and f in main manuscript, but showing in gray stippling regions that are statistically significant above the 95% confidence level.

Extended Data Fig. 2 Sea surface temperature gradient magnitude trends for periods between 1981-2020 and 1993-2020.

Gray stippling shows regions that are statistically significant above the 95% confidence level.

Extended Data Fig. 3 Sea surface temperature gradient magnitude trend scale analysis.

Large-scale SST gradient magnitudes are computed by filtering the SST field with a 3 kernel filter and a running average of 12 months before computing the gradient magnitudes and their respective trends (see Methods). The small scales correspond to the gradients of the SST minus the large-scale filtered SST field. a, Zonally averaged SST gradient magnitude trends; b, map of SST gradient magnitude trends; c, zonally averaged small-scale SST gradient magnitude trends; d, map of small-scale SST gradient magnitude trends; e, zonally averaged large-scale SST gradient magnitude trends; f, map of large-scale SST gradient magnitude trends. In panels b, d, and f gray stippling shows regions where the trends are statistically significant above the 95% confidence level.

Extended Data Fig. 4 Regional ratio of mesoscale SST gradient magnitude trends and surface EKE trends signs.

a, Kuroshio current; b, Gulf Stream; c, East Australian Current; d, Agulhas retroflection. The ratio was computed by integrating the area weighted sign of the SST gradient magnitude trends and surface EKE trends divided by the total area of the region plotted in the fig. 3. Quadrants I and III of each panel show colocated regions with the same sign in SST gradients and EKE trends, more than 60% of the signs in the a, Kuroshio current, c, East Australian Current, and d, Agulhas retroflection are colocated.

Extended Data Fig. 5 Surface eddy kinetic energy time-series and trends computed from filtered velocities.

Scales larger than typical mesoscale are computed by filtering the surface velocity fields with a 3 kernel filter (\({\overrightarrow{u}}_{ls}\)), and the smaller scales are calculated from the difference of the velocity fields and the filtered velocity field (\({\overrightarrow{u}}_{m}=\overrightarrow{u}-{\overrightarrow{u}}_{ls}\)). Then surface EKE and their respective trends are computed (see Methods). a, EKE time series of scales larger than 3 degrees time series; b, EKE time series of scales smaller than 3 degrees; c, map of large-scale EKE trends; d, map of small-scale EKE trends. Text in panels a and b correspond to trends per decade.

Extended Data Fig. 6 Time-series and trends of surface eddy kinetic energy integrated over boundary currents.

a, Map of boundary current regions defined from climatological mean EKE and time series anomalies (PJ m−1) and trends (PJ m−1 decade−1) for each boundary current: b, Kuroshio Current; c, Agulhas Current; d, East Australian Current and Leeuwin Current; e, Gulf Stream; f, Malvinas Current. g, Linear EKE trends for boundary currents, uncertainties are shown in orange bars and statistically significant trends (above the 95% confidence level) are denoted with solid bars while non-significant trends are translucent.

Extended Data Fig. 7 Comparison of satellite trends using surface EKE and kinetic energy anomaly (KE’) as computed by Hu et al. (2020)15.

a, EKE trend map, b, KE’ trend map, and c, difference between EKE and KE’ trends. The difference between the fields is a consequence of the cross terms due to the Reynolds velocity decomposition. In panel a and b gray stippling shows regions where the trends are statistically significant above the 95% confidence level.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Moreno, J., Hogg, A.M., England, M.H. et al. Global changes in oceanic mesoscale currents over the satellite altimetry record. Nat. Clim. Chang. 11, 397–403 (2021). https://doi.org/10.1038/s41558-021-01006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-021-01006-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing