Extremes become routine in an emerging new Arctic

Abstract

The Arctic is rapidly warming and experiencing tremendous changes in sea ice, ocean and terrestrial regions. Lack of long-term scientific observations makes it difficult to assess whether Arctic changes statistically represent a ‘new Arctic’ climate. Here we use five Coupled Model Intercomparison Project 5 class Earth system model large ensembles to show how the Arctic is transitioning from a dominantly frozen state and to quantify the nature and timing of an emerging new Arctic climate in sea ice, air temperatures and precipitation phase (rain versus snow). Our results suggest that Arctic climate has already emerged in sea ice. Air temperatures will emerge under the representative concentration pathway 8.5 scenario in the early- to mid-twenty-first century, followed by precipitation-phase changes. Despite differences in mean state and forced response, these models show striking similarities in their anthropogenically forced emergence from internal variability in Arctic sea ice, surface temperatures and precipitation-phase changes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Changes in means and distributions of annual minimum and maximum NH SIE.
Fig. 2: Mean October and February surface temperatures and ToE.
Fig. 3: Relationships among Arctic Ocean SIEs, SIT and October and February polar (70°–90° N) surface air temperature changes, 1980–2099.
Fig. 4: Mean first- and last-rain-day changes and ToE of the rain-season duration.

Data availability

All data used in this study are publicly available. CMIP5-MMLE output are available through the MMLEA (US CLIVAR Multi-Model LE Archive (NCAR); http://www.cesm.ucar.edu/projects/community-projects/MMLEA/). The Walsh extended and NSIDC SICs are available online (https://nsidc.org/).

Code availability

Code to produce all figures is available from the corresponding author.

References

  1. 1.

    Box, J. E. et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 14, 045010 (2017).

    Google Scholar 

  2. 2.

    Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

    Google Scholar 

  3. 3.

    Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77, 85–96 (2011).

    Google Scholar 

  4. 4.

    Screen, J. A. & Simmonds, I. I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).

    CAS  Google Scholar 

  5. 5.

    Fetterer, F., Knowles, K., Meier, W. N., Savoie, M. & Windnagel, A. K. Sea Ice Index, Version 3 (Northern Hemisphere monthly) (NSIDC, accessed 22 April 2020); https://doi.org/10.7265/N5K072F8

  6. 6.

    Graham, R. et al. Increasing frequency and duration of Arctic winter warming events. Geophys. Res. Lett. 44, 6974–6983 (2017).

    Google Scholar 

  7. 7.

    Moore, G. W. K. The December 2015 North Pole warming event and the increasing occurrence of such events. Nat. Sci. Rep. 6, 39084 (2016).

    CAS  Google Scholar 

  8. 8.

    Rinke, A. et al. Extreme cyclone events in the Arctic: Wintertime variability and trends. Environ. Res. Lett. 12, 094006 (2017).

    Google Scholar 

  9. 9.

    Cohen, J., H. Ye, H. & Jones, J. Trends and variability in rain-on-snow events. Geophys. Res. Lett. 42, 7115–7122 (2015).

    Google Scholar 

  10. 10.

    Hansen, B. B., Aanes, R., Herfindal, I., Kohler, J. & Sæther, B.-E. Climate, icing, and wild Arctic reindeer: past relationships and future prospects. Ecology 92, 1917–1923 (2011).

    Google Scholar 

  11. 11.

    Rennert, K., Roe, G., Putkonen, J. & Bitz, C. M. Soil thermal and ecological impacts of rain on snow events in the circumpolar Arctic. J. Clim. 22, 2302–2315 (2008).

    Google Scholar 

  12. 12.

    Stien, A. et al. Congruent responses to weather variability in high Arctic herbivores. Biol. Lett. 8, 1002–1005 (2012).

    Google Scholar 

  13. 13.

    Beaumont, L. J. et al. Impacts of climate change on the world’s most exceptional ecoregions. Proc. Natl Acad. Sci. USA 108, 2306–2311 (2011).

    CAS  Google Scholar 

  14. 14.

    Giorgi, F. & Bi, X. Time of emergence (TOE) of GHG forced precipitation change hot-spots. Geophys. Res. Lett. 36, L06709 (2009).

    Google Scholar 

  15. 15.

    Haine, T. W. & Martin, T. The Arctic–Subarctic sea ice system is entering a seasonal regime: implications for future Arctic amplification. Sci. Rep. 7, 4618 (2017).

    Google Scholar 

  16. 16.

    King, A. D. et al. The timing of anthropogenic emergence in simulated climate extremes. Environ. Res. Lett. 10, 094015 (2015).

    Google Scholar 

  17. 17.

    Lehner, F., Deser, C. & Terray, L. Toward a new estimate of “time of emergence” of anthropogenic warming: insights from dynamical adjustment and a large initial-condition model ensemble. J. Clim. 30, 7739–7756 (2017).

    Google Scholar 

  18. 18.

    Mahlstein, I., Heger, G. & Solomon, S. Emerging local warming signals in observational data. Geophys. Res. Lett. 39, L21711 (2012).

    Google Scholar 

  19. 19.

    Barnhart, K. R., Miller, C. R., Overeem, I. & Kay, J. E. Mapping the future expansion of Arctic open water. Nat. Clim. Change 6, 280–285 (2016).

    Google Scholar 

  20. 20.

    Moon, T. A. et al. The expanding footprint of rapid Arctic change. Earths Future 7, 212–218 (2019).

    Google Scholar 

  21. 21.

    Hegerl, G. C., Brönnimann, S., Schurer, A. & Cowan, T. The early 20th century warming: anomalies, causes, and consequences. Wiley Interdiscip. Rev. Clim. Change 9, e522 (2018).

    Google Scholar 

  22. 22.

    Tokinaga, H., Xie, S. P. & Mukougawa, H. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proc. Natl Acad. Sci. USA 114, 6227–6232 (2017).

    CAS  Google Scholar 

  23. 23.

    Walsh, J. E., Fetterer, F., Stewart, J. Scott & Chapman, W. L. A database for depicting Arctic sea ice variations back to 1850. Geographical Rev. 107, 89–107 (2016).

    Google Scholar 

  24. 24.

    Brönnimann, S. et al. A multi‐data set comparison of the vertical structure of temperature variability and change over the Arctic during the past 100 years. Clim. Dyn. 39, 1577–1598 (2012).

    Google Scholar 

  25. 25.

    Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).

    Google Scholar 

  26. 26.

    Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change https://doi.org/10.1038/s41558-020-0731-2 (2020).

  27. 27.

    Dai, A., Luo, D., Song, M. & Liu, J. Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun. 10, 121 (2019).

    Google Scholar 

  28. 28.

    Hall, A. The role of surface albedo feedback in climate. J. Clim. 17, 1550–1568 (2004).

    Google Scholar 

  29. 29.

    Holland, M. M. & Bitz, C. M. Polar amplification of climate change in coupled models. Clim. Dyn. 21, 221–232 (2003).

    Google Scholar 

  30. 30.

    Kumar, A. et al. Contribution of sea ice loss to Arctic amplification. Geophys. Res. Lett. https://doi.org/10.1029/2010GL045022 (2010).

  31. 31.

    Labe, Z. M., Peings, Y. & Magnusdottir, G. Contributions of ice thickness to the atmospheric response from projected Arctic sea ice loss. Geophys. Res. Lett. https://doi.org/10.1029/2018GL078158 (2018).

  32. 32.

    Lang, A., Yang, S. & Kaas, E. Sea ice thickness and recent Arctic warming. Geophys. Res. Lett. 44, 409–418 (2017).

    Google Scholar 

  33. 33.

    Pithan, F. & Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 7, 181–184 (2014).

    CAS  Google Scholar 

  34. 34.

    Screen, J. A., Simmonds, I., Deser, C. & Tomas, R. The atmospheric response to three decades of observed Arctic sea ice loss. J. Clim. 26, 1230–1248 (2013).

    Google Scholar 

  35. 35.

    Screen, J. A. et al. Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nat. Geosci. 11, 155–163 (2018).

    CAS  Google Scholar 

  36. 36.

    Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N. & Holland, M. M. The emergence of surface-based Arctic amplification. Cryosphere 3, 11–19 (2009).

    Google Scholar 

  37. 37.

    Smith, D. M. et al. The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification. Geosci. Model Dev. 12, 1139–1164 (2019).

    Google Scholar 

  38. 38.

    Sun, L. et al. Drivers of 2016 record Arctic warmth assessed using climate simulations subjected to factual and counterfactual forcing. Weather Clim. Extrem. https://doi.org/10.1016/j.wace.2017.11.001 (2018).

  39. 39.

    Holland, M. M., Bitz, C. M., Tremblay, B. & Bailey, D. A. in Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications (eds DeWeaver, E. T. et al.) 133–150 (AGU, 2008).

  40. 40.

    Goosse, H., Arzel, O., Bitz, C. M., de Montety, A. & Vancoppenolle, M. Increased variability of the Arctic summer ice extent in a warmer climate. Geophys. Res. Lett. 36, L23702 (2009).

    Google Scholar 

  41. 41.

    Mioduszewski, J., Vavrus, S., Wang, M., Holland, M. & Landrum, L. Future interannual variability of Arctic sea ice in coupled climate models. Cryosphere 13, 113–124 (2018).

    Google Scholar 

  42. 42.

    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Climatic Change 109, 213–241 (2011).

    CAS  Google Scholar 

  43. 43.

    Liu, J., Song, M., Horton, R. M. & Hu, Y. Reducing spread in projected ice-free Arctic. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1219716110 (2013).

  44. 44.

    Massonnet, F. et al. Constraining projections of summer Arctic sea ice. Cryosphere Discuss. 6, 2931–2959 (2012).

    Google Scholar 

  45. 45.

    Overland, J. E. & Wang, M. When will the summer Arctic be nearly sea ice free. Geophys. Res. Lett. 40, 2097–2101 (2013).

    Google Scholar 

  46. 46.

    Wang, M. & Overland, J. E. Projected future duration of the sea-ice-free season in the Alaskan Arctic. Prog. Oceanogr. 136, 50–59 (2015).

    Google Scholar 

  47. 47.

    Jahn, A. Reduced probability of ice-free summers for 1.5 °C compared to 2 °C warming. Nat. Clim. Change 8, 409–413 (2018).

    Google Scholar 

  48. 48.

    Screen, J. A. & Williamson, D. Ice-free Arctic at 1.5 °C? Nat. Clim. Change 7, 230–231 (2017).

    Google Scholar 

  49. 49.

    Sigmond, M., Fyfe, J. C. & Swart, N. C. Ice-free Arctic projections under the Paris Agreement. Nat. Clim. Change 8, 404–408 (2018).

    Google Scholar 

  50. 50.

    Blüthgen, J., R. Gerdes, R. & Werner, M. Atmospheric response to the extreme Arctic sea ice conditions in 2007. Geophys. Res. Lett. https://doi.org/10.1029/2011GL050486 (2012).

  51. 51.

    Francis, J. A., Chan, W., Leathers, D. J., Miller, J. R. & Veron, D. Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett. 36, L07503 (2009).

    Google Scholar 

  52. 52.

    Francis, J. A. & Vavrus, S. J. Evidence linking Arctic amplification to extreme weather in mid‐latitudes. Geophys. Res. Lett. 39, LO6801 (2012).

    Google Scholar 

  53. 53.

    Jaiser R., Dethloff, K., Handorf, D., Rinke, A. & Cohen, J. Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus A https://doi.org/10.3402/tellusa.v64i0.11595 (2012).

  54. 54.

    Maykut, G. A. & Untersteiner, N. Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res. 76, 1550–1575 (1972).

    Google Scholar 

  55. 55.

    Deser, C., Tomas, R., Alexander, M. & Lawrence, D. The seasonal atmospheric response to projected Arctic sea ice loss in the late 21st century. J. Clim. 23, 333–351 (2010).

    Google Scholar 

  56. 56.

    Bintanja, R. & van der Linden, E. C. The changing seasonal climate in the Arctic. Sci. Rep. https://doi.org/10.1038/srep01556 (2012).

  57. 57.

    Screen, J. A. Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Clim. Change 4, 577–582 (2014).

    Google Scholar 

  58. 58.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Google Scholar 

  59. 59.

    Rhines, A., McKinnon, K. A., Tingley, M. P. & Huybers, P. Seasonally resolved distributional trends of North American temperatures show contraction of winter variability. J. Clim. 30, 1139–1157 (2017).

    Google Scholar 

  60. 60.

    Pan, C. G., Kirchner P. B., Kimball, J. S., Kim, Y. & Du, J. Rain-on-snow events in Alaska, their frequency and distribution from satellite observations. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aac9d3 (2018).

  61. 61.

    Ye, H. Changes in frequency of precipitation types associated with surface air temperature over northern Eurasia during 1936–90. J. Clim. 29, 729–734 (2008).

    Google Scholar 

  62. 62.

    Callaghan, T. V. et al. Multiple effects on changes in Arctic snow cover. Ambio 40, 32–45 (2011).

    Google Scholar 

  63. 63.

    Conway, H. & Raymond, C. F. Snow stability during rain. J. Glaciol. 39, 635–642 (1993).

    Google Scholar 

  64. 64.

    McCabe, G. J., Clark, M. P. & Hay, L. E. Rain‐on‐snow events in the western United States. Bull. Am. Meteorol. Soc. 88, 319–328 (2007).

    Google Scholar 

  65. 65.

    Putkonen, J. & G. Roe, G. Rain‐on‐snow events impact soil temperatures and affect ungulate survival. Geophys. Res. Lett. 30, 1188 (2003).

    Google Scholar 

  66. 66.

    Ye, H. & Cohen, J. Shorter snowfall season associated with higher air temperatures over northern Eurasia. Environ. Res. Lett. 8, 014052 (2013).

    Google Scholar 

  67. 67.

    Hansen, B. B. et al. Warmer and wetter winters: characteristics and implications of an extreme weather event in the high Arctic. Environ. Res. Lett. 9, 114021 (2014).

    Google Scholar 

  68. 68.

    Kirchmeier-Young, M. C., Zwiers, F. W. & Gillett, N. P. Attribution of extreme events in Arctic sea ice extent. J. Clim. 30, 553–571 (2017).

    Google Scholar 

  69. 69.

    Kay, J. E. et al. The Community Earth System Model (CESM) Large Ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    Google Scholar 

  70. 70.

    Sun, L., Alexander, M. & Deser, C. Evolution of the global coupled climate response to Arctic sea ice loss during 1990–2090 and its contribution to climate change. J. Clim. 31, 7823–7843 (2018).

    Google Scholar 

  71. 71.

    Rodgers, K. B., Lin, J. & Frölicher, T. L. Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences 12, 3301–3320 (2015).

    Google Scholar 

  72. 72.

    Maher, N. et al. The max planck institute grand ensemble—enabling the exploration of climate system variability. J. Adv. Model. Earth Syst. 11, 2050–2069 (2019).

    Google Scholar 

  73. 73.

    Arguez, A. & Vose, R. S. The definition of the standard WMO climate normal: the key to deriving alternative climate normals. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/2010BAMS2955.1 (2011).

  74. 74.

    Labe, Z., Magnusdottir, G. & Stern, H. Variability of Arctic sea ice thickness using PIOMAS and the CESM large ensemble. J. Clim. 31, 3233–3247 (2018).

    Google Scholar 

  75. 75.

    Randall, D. A. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 8 (Cambridge Univ. Press, 2007).

  76. 76.

    Rosenblum, E. & Eisenman, I. Sea ice trends in climate models only accurate runs with biased global warming. J. Clim. 30, 6265–6278 (2017).

    Google Scholar 

  77. 77.

    Stroeve, J. & Notz, D. Insights on past and future sea-ice evolution from combining observations and models. Glob. Planet. Change 135, 119–132 (2015).

    Google Scholar 

  78. 78.

    Kinnard, C. M. et al. Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature 479, 509–512 (2011).

    CAS  Google Scholar 

  79. 79.

    Soulé, P. T. & Knapp, P. A. A 400-year reconstruction of wintertime Arctic sea-ice extent using a high-elevation, mid-latitude tree-ring record. Int. J. Biometeorol. 63, 1217–1229 (2019).

    Google Scholar 

  80. 80.

    The NCAR Command Language v.6.6.2 (UCAR, NCAR, CISL and TDD, 2019); https://doi.org/10.5065/D6WD3XH5

  81. 81.

    Landrum, L. Scripts for figures and analysis for “Extremes become routine in an emerging new Arctic”. Zenodo https://doi.org/10.5281/zenodo.3942733 (2020).

  82. 82.

    Walsh, J. E., Chapman, W. L., Fetterer, F. & Stewart, J. S. Gridded Monthly Sea Ice Extent and Concentration, 1850 Onward, Version 2 (NSIDC, accessed 23 April 2020); https://doi.org/10.7265/jj4s-tq79

Download references

Acknowledgements

We acknowledge support from a grant from the NOAA Climate Program Office Grant NA15OAR4310166 and NSF Grant 1724748. We acknowledge the CESM Large Ensemble Community Project and high-performance computing support from both Yellowstone (ark:/85065/d7wd3xhc) and Cheyenne (https://doi.org/10.5065/D6RX99HX) provided by NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation. We thank the US National Science Foundation, National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, and Department of Energy for sponsoring the activities of the US CLIVAR Working Group on Large Ensembles. We also gratefully acknowledge all of the modelling groups listed in Table 1 for making their Large Ensemble simulations available in the Multi-Model Large Ensemble data repository.

Author information

Affiliations

Authors

Contributions

L.L. and M.M.H. conceived the study. L.L. performed the analysis, created the figures and led the writing of the manuscript with contributions from M.M.H.

Corresponding author

Correspondence to Laura Landrum.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks John Walsh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 CMIP5-MMLE NH SIE monthly climatology for 5 decades.

Dashed/dotted lines indicate (1979–1988)/(2010-2019) monthly decadal averages from the NSIDC ice index5. Solid grey line indicates the 1 million km2 ‘Ice Free’ definition.

Extended Data Fig. 2 CMIP5-MMLE and observational based Arctic Sea Ice extents.

Bold solid lines indicate ensemble mean, with opaque polygon showing range of simulations for each ensemble. Extended Sea Ice dataset82 and NSIDC ice index5 are shown in solid dark and light grey, respectively. Insets show PDFs for running 20 yr trends over the 20th Century for each model for both minimum and maximum SIEs.

Extended Data Fig. 3 CMIP5-MMLE Time of Emergence of monthly October and February surface air temperatures.

October/February ToEs are shown in the left/right panels.

Extended Data Fig. 4 CMIP5-MMLE mean October surface air temperature changes from (1950-1959) baseline.

Results shown for early, middle and late 21st century under RCP8.5 forcing scenario. Contours indicate September 15% sea ice concentration contours for base period (1950-1959; black) and future decades (white).

Extended Data Fig. 5 CMIP5-MMLE mean February surface air temperature changes from (1950-1959) baseline.

Results shown for early, middle and late 21st century under RCP8.5 forcing scenario. Contours indicate February 15% and 85% sea ice concentration contours for base period (1950-1959; 15% black) and future decades (15% white, 85% grey).

Extended Data Fig. 6 CMIP5-MMLE first rain day changes from (1950-1959) baseline.

Results shown for early, middle and late 21st century under RCP8.5 forcing scenario.

Extended Data Fig. 7 CMIP5-MMLE last rain day changes from (1950-1959) baseline.

Results shown for early, middle and late 21st century under RCP8.5 forcing scenario.

Extended Data Fig. 8 CMIP5-MMLE rain season duration from (1950-1959) baseline.

Results shown for early, middle and late 21st century under RCP8.5 forcing scenario.

Supplementary information

Supplementary Information

Supplementary Fig. 1, discussion and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Landrum, L., Holland, M.M. Extremes become routine in an emerging new Arctic. Nat. Clim. Chang. (2020). https://doi.org/10.1038/s41558-020-0892-z

Download citation

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing