Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The climate change mitigation potential of bioenergy with carbon capture and storage

Abstract

Bioenergy with carbon capture and storage (BECCS) can act as a negative emission technology and is considered crucial in many climate change mitigation pathways that limit global warming to 1.5–2 °C; however, the negative emission potential of BECCS has not been rigorously assessed. Here we perform a global spatially explicit analysis of life-cycle GHG emissions for lignocellulosic crop-based BECCS. We show that negative emissions greatly depend on biomass cultivation location, treatment of original vegetation, the final energy carrier produced and the evaluation period considered. We find a global potential of 28 EJ per year for electricity with negative emissions, sequestering 2.5 GtCO2 per year when accounting emissions over 30 years, which increases to 220 EJ per year and 40 GtCO2 per year over 80 years. We show that BECCS sequestration projected in IPCC SR1.5 °C pathways can be approached biophysically; however, considering its potentially very large land requirements, we suggest substantially limited and earlier deployment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global emission–supply curve and emission factor map of bioelectricity with CCS.
Fig. 2: Global emission–supply curves of liquid biofuels with CCS.
Fig. 3: Global emission–supply curves of BECCS electricity with different initial biomass use scenarios over a 30-year evaluation period.
Fig. 4: Carbon sequestration potential of BECCS electricity in climate change mitigation pathways.
Fig. 5: Sensitivity of BECCS electricity emission–supply curves to parameterization.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available within the paper and its Supplementary Information. All source data for figures and datasets generated during the current study are available online at https://doi.org/10.17026/dans-x73-tqeg. Source data for figures in the Supplementary Information are available from the corresponding author on reasonable request.

Code availability

The code used in the analyses of the current study is available from the corresponding author on reasonable request.

References

  1. Azar, C., Johansson, D. J. A. & Mattsson, N. Meeting global temperature targets—the role of bioenergy with carbon capture and storage. Environ. Res. Lett. 8, 034004 (2013).

    Google Scholar 

  2. Tavoni, M. & Socolow, R. Modeling meets science and technology: an introduction to a special issue on negative emissions. Climatic Change 118, 1–14 (2013).

    Google Scholar 

  3. Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 413–510 (IPCC, Cambridge Univ. Press, 2014).

  4. Fuss, S. et al. Research priorities for negative emissions. Environ. Res. Lett. 11, 115007 (2016).

    Google Scholar 

  5. Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).

    CAS  Google Scholar 

  6. Van Vuuren, D. P. et al. Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nat. Clim. Change 8, 391–397 (2018).

    Google Scholar 

  7. Rogelj, J. et al. in Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 93–174 (in the press).

  8. Obersteiner, M. et al. Managing climate risk. Science 294, 786–787 (2001).

    CAS  Google Scholar 

  9. Gough, C. & Upham, P. Biomass energy with carbon capture and storage (BECCS or Bio-CCS). Greenh. Gases 1, 324–334 (2011).

    CAS  Google Scholar 

  10. Kemper, J. Biomass and carbon dioxide capture and storage: a review. Int. J. Greenh. Gas. Con. 40, 401–430 (2015).

    CAS  Google Scholar 

  11. Bonsch, M. et al. Trade-offs between land and water requirements for large-scale bioenergy production. GCB Bioenergy 8, 11–24 (2016).

    Google Scholar 

  12. Fajardy, M., Chiquier, S. & Mac Dowell, N. Investigating the BECCS resource nexus: delivering sustainable negative emissions. Energy Environ. Sci. 11, 3408–3430 (2018).

    CAS  Google Scholar 

  13. Heck, V., Gerten, D., Lucht, W. & Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Change 8, 345–345 (2018).

    Google Scholar 

  14. Stoy, P. C. et al. Opportunities and trade-offs among BECCS and the food, water, energy, biodiversity, and social systems nexus at regional scales. BioScience 68, 100–111 (2018).

    Google Scholar 

  15. Kato, E. & Yamagata, Y. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions. Earth’s Future 2, 421–439 (2014).

    Google Scholar 

  16. Fuss, S. et al. Negative emissions—part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).

    Google Scholar 

  17. Fridahl, M. & Lehtveer, M. Bioenergy with carbon capture and storage (BECCS): global potential, investment preferences, and deployment barriers. Energy Res. Soc. Sci. 42, 155–165 (2018).

    Google Scholar 

  18. Torvanger, A. Governance of bioenergy with carbon capture and storage (BECCS): accounting, rewarding, and the Paris Agreement. Clim. Policy 19, 329–341 (2019).

    Google Scholar 

  19. Bednar, J., Obersteiner, M. & Wagner, F. On the financial viability of negative emissions. Nat. Commun. 10, 1783 (2019).

    Google Scholar 

  20. Daggash, H. A. & Mac Dowell, N. Higher carbon process on emissions alone will not deliver the Paris Agreement. Joule 3, 1–14 (2019).

    Google Scholar 

  21. Fajardy, M. & Mac Dowell, N. Can BECCS deliver sustainable and resource efficient negative emissions? Energy Environ. Sci. 10, 2267–2267 (2017).

    Google Scholar 

  22. Harper, A. B. et al. Land-use emissions play a critical role in landbased mitigation for Paris climate targets. Nat. Commun. 9, 2938 (2018).

    Google Scholar 

  23. Elshout, P. M. F. et al. Greenhouse-gas payback times for crop-based biofuels. Nat. Clim. Change 5, 604–610 (2015).

    CAS  Google Scholar 

  24. Daioglou, V. et al. Greenhouse gas emission curves for advanced biofuel supply chains. Nat. Clim. Change 7, 920–924 (2017).

    CAS  Google Scholar 

  25. Searchinger, T. et al. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).

    CAS  Google Scholar 

  26. Gerssen-Gondelach, S. J., Wicke, B. & Faaij, A. P. C. GHG emissions and other environmental impacts of indirect land use change mitigation. GCB Bioenergy 9, 725–742 (2017).

    CAS  Google Scholar 

  27. Hasegawa, T. et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Change 8, 699–703 (2018).

    Google Scholar 

  28. Doelman, J. C. et al. Exploring SSP land-use dynamics using the IMAGE model: regional and gridded scenarios of land-use change and land-based climate change mitigation. Glob. Environ. Change 48, 119–135 (2018).

    Google Scholar 

  29. Fujimori, S. et al. A multi-model assessment of food security implications of climate change mitigation. Nat. Sustain. 2, 386–396 (2019).

    Google Scholar 

  30. Creutzig, F. et al. Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7, 916–944 (2015).

    CAS  Google Scholar 

  31. IEA Key Energy Statistics 2018 (OECD/IEA, 2018); https://www.iea.org/reports/key-world-energy-statistics-2019

  32. UN UNdata Gas Oil/Diesel Oil (UN Statistics Division, 2019); https://data.un.org/

  33. Blakey, S., Rye, L. & Wilson, C. W. Aviation gas turbine alternative fuels: a review. Proc. Combust. Inst. 33, 2863–2885 (2011).

    CAS  Google Scholar 

  34. Hanssen, S. V., Duden, A. S., Junginger, H. M., Dale, V. H. & van der Hilst, F. Wood pellets, what else? Greenhouse gas parity times of European electricity from wood pellets produced in the south-eastern United States using different softwood feedstocks. GCB Bioenergy 9, 1406–1422 (2017).

    CAS  Google Scholar 

  35. Huppman, D. et al. IAMC 1.5°C Scenario Explorer and Data hosted by IIASA (IAMC/IIASA 2019); https://doi.org/10.5281/zenodo.3363345

  36. Obersteiner, M. et al. How to spend a dwindling greenhouse gas budget. Nat. Clim. Change 8, 7–10 (2018).

    Google Scholar 

  37. Lundmark, T., Bergh, J., Nordin, A., Fahlvik, N. & Poudel, B. C. Comparison of carbon balances between continuous-cover and clear-cut forestry in Sweden. Ambio 45, 203–213 (2016).

    Google Scholar 

  38. Peura, M., Burgas, D., Eyvindson, K., Repo, A. & Mönkkönen, M. Continuous cover forestry is a cost-efficient tool to increase multifunctionality of boreal production forests in Fennoscandia. Biol. Conserv. 217, 104–112 (2018).

    Google Scholar 

  39. Kuuluvainen, T. & Gauthier, S. Young and old forest in the boreal: critical stages of ecosystem dynamics and management under global change. For. Ecosyst. 5, 5–26 (2018).

    Google Scholar 

  40. Zabel, F., Putzenlechner, B. & Mauser, W. Global agricultural land resources—a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE 9, e107522 (2014).

    Google Scholar 

  41. De Coninck, H. et al. in Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 313–443 (in the press).

  42. Chaudhary, A., Verones, F., de Baan, L. & Hellweg, S. Quantifying land use impacts on biodiversity: combining species-area models and vulnerability indicators. Environ. Sci. Technol. 49, 9987–9995 (2015).

    CAS  Google Scholar 

  43. Hof, C. et al. Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. Proc. Natl Acad. Sci. USA 115, 13294–13299 (2018).

    CAS  Google Scholar 

  44. Scott, V., Haszeldine, R. S., Tett, S. F. B. & Oschlies, A. Fossil fuels in a trillion tonne world. Nat. Clim. Change 5, 419–423 (2015).

    CAS  Google Scholar 

  45. Baik, E. et al. Geospatial analysis of near-term potential for carbon-negative bioenergy in the United States. Proc. Natl Acad. Sci. USA 115, 3290–3295 (2018).

    CAS  Google Scholar 

  46. Haszeldine, R. S., Flude, S., Johnson, G. & Scott, V. Negative emissions technologies and carbon capture and storage to achieve the Paris agreement commitments. Philos. Trans. R. Soc. 376, 20160447 (2018).

    Google Scholar 

  47. Turner, P. A. et al. The global overlap of bioenergy and carbon sequestration potential. Climatic Change 148, 1–10 (2018).

    CAS  Google Scholar 

  48. Van Vuuren, D. P., Hof, A. F., van Sluisveld, M. A. E. & Riahi, K. Open discussion of negative emissions is urgently needed. Nat. Energy 2, 902–904 (2017).

    Google Scholar 

  49. Sanchez, D. L., Johnson, N., McCoy, S. T., Turner, P. A. & Mach, K. J. Near-term deployment of carbon capture and sequestration from biorefineries in the United States. Proc. Natl Acad. Sci. USA 115, 4875–4880 (2018).

    CAS  Google Scholar 

  50. Turner, P. A., Field, C. B., Lobell, D. B., Sanchez, D. L. & Mach, K. J. Unprecedented rates of land-use transformation in modelled climate change mitigation pathways. Nat. Sustainability 1, 240–245 (2018).

    Google Scholar 

  51. Grubler, A. et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Energy 3, 515–527 (2018).

    Google Scholar 

  52. Hanssen, S. V. et al. Biomass residues as twenty-first century bioenergy feedstock—a comparison of eight integrated assessment models. Climatic Change https://doi.org/10.1007/s10584-019-02539-x (2019).

  53. Pour, N., Webley, P. A. & Cook, P. J. Potential for using municipal solid waste as a resource for bioenergy with carbon capture and storage (BECCS). Int. J. Greenh. Gas. Con. 68, 1–15 (2018).

    CAS  Google Scholar 

  54. Robertson, G. P. et al. Cellulosic biofuel contributions to a sustainable energy future: choices and outcomes. Science 356, 2324 (2017).

    Google Scholar 

  55. Hertwich, E. G. et al. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl Acad. Sci. USA 112, 6277–6282 (2015).

    CAS  Google Scholar 

  56. Bruckner, T. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 511–597 (IPCC, Cambridge Univ. Press, 2014).

  57. Giuntoli, J., Agostini, A., Edwards, R. & Marelli, L. Solid and Gaseous Bioenergy Pathways: Input Values and GHG Emissions (Joint Research Centre of European Commission, 2014).

  58. Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 659–740 (Cambridge Univ. Press, 2013).

  59. Stehfest, E. et al. Integrated Assessment of Global Environmental Change with IMAGE 3.0: Model Description and Policy Applications (PBL Netherlands Environmental Assessment Agency, 2014).

  60. Beringer, T., Lucht, W. & Schaphoff, S. Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy 3, 299–312 (2011).

    CAS  Google Scholar 

  61. Müller, C. et al. Drivers and patterns of land biosphere carbon balance reversal. Environ. Res. Lett. 11, 44002 (2016).

    Google Scholar 

  62. Van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

    Google Scholar 

  63. Whitaker, J. et al. Consensus, uncertainties and challenges for perennial bioenergy crops and land use. GCB Bioenergy 10, 150–164 (2018).

    Google Scholar 

  64. Daioglou, V., Doelman, J. C., Wicke, B., Faaij, A. & van Vuuren, D. P. Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Glob. Environ. Change 54, 88–101 (2019).

    Google Scholar 

  65. Gerssen-Gondelach, S. J., Saygin, D., Wicke, B., Patel, M. K. & Faaij, A. P. C. Competing uses of biomass: assessment and comparison of the performance of bio-based heat, power, fuels and materials. Renew. Sustain. Energy Rev. 40, 964–998 (2014).

    CAS  Google Scholar 

  66. Boehmel, C., Lewandowski, I. & Claupein, W. Comparing annual and perennial energy cropping systems with different management intensities. Agric. Syst. 96, 224–236 (2008).

    Google Scholar 

  67. Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    CAS  Google Scholar 

  68. de Andrade, R. B. et al. Scenarios in tropical forest degradation: carbon stock trajectories for REDD+. Carbon Balance Manag. 12, 6 (2017).

    Google Scholar 

  69. Rappaport, D. I. et al. Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation. Environ. Res. Lett. 13, 065013 (2018).

    Google Scholar 

  70. Bonner, M. T. L., Schmidt, S. & Shoo, L. P. A meta-analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations. For. Ecol. Manag. 291, 73–86 (2013).

    Google Scholar 

  71. Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).

    CAS  Google Scholar 

  72. Schlömer, S. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 1329–1356 (IPCC, Cambridge Univ. Press, 2014).

Download references

Acknowledgements

The authors thank H. de Coninck for critically reviewing the manuscript and M. Čengić for his help with coding. S.V.H., Z.J.N.S. and M.A.J.H. were supported by ERC–CoG SIZE (no. 647224).

Author information

Authors and Affiliations

Authors

Contributions

S.V.H., V.D., D.P.v.V. and M.A.J.H. designed the study. J.C.D. and V.D. performed the LPJml and IMAGE runs. S.V.H. collected literature data. S.V.H. performed the EF, emission–supply curve and mitigation pathway analyses, with help from V.D., Z.J.N.S. and M.A.J.H. The manuscript was written by S.V.H., with revisions from all authors.

Corresponding author

Correspondence to S. V. Hanssen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Page Kyle, Daniel Sanchez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

All supplementary information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanssen, S.V., Daioglou, V., Steinmann, Z.J.N. et al. The climate change mitigation potential of bioenergy with carbon capture and storage. Nat. Clim. Chang. 10, 1023–1029 (2020). https://doi.org/10.1038/s41558-020-0885-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-020-0885-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing