Past perspectives on the present era of abrupt Arctic climate change

Abstract

Abrupt climate change is a striking feature of many climate records, particularly the warming events in Greenland ice cores. These abrupt and high-amplitude events were tightly coupled to rapid sea-ice retreat in the North Atlantic and Nordic Seas, and observational evidence shows they had global repercussions. In the present-day Arctic, sea-ice loss is also key to ongoing warming. This Perspective uses observations and climate models to place contemporary Arctic change into the context of past abrupt Greenland warmings. We find that warming rates similar to or higher than modern trends have only occurred during past abrupt glacial episodes. We argue that the Arctic is currently experiencing an abrupt climate change event, and that climate models underestimate this ongoing warming.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Trends in Arctic temperature and sea-ice cover.
Fig. 2: Greenland temperature record over the past 60,000 years.
Fig. 3: Comparison of reconstructed and modelled Greenland abrupt changes.
Fig. 4: Past and future rapid temperature trends.
Fig. 5: Arctic temperature trends under different forcing scenarios.
Fig. 6: Evidence for ongoing Atlantification in the Arctic.

Data availability

For Fig. 1, The ERA-Interm data are available from https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim (ref. 70). For Fig. 2, NGRIP data are from http://www.iceandclimate.nbi.ku.dk/data/2010-11-19_GICC05modelext_for_NGRIP.xls (ref. 71). For Figs. 3 and 4, the NorESM Marine Isotope Stage 3 simulation is available through the Norwegian Research Data Archive: https://doi.org/10.11582/2020.00006 (ref. 48). The NorESM RCP 8.5 simulation is available from the CMIP5 ESGF archive: https://esgf-node.llnl.gov/projects/cmip5/ (ref. 72). The data of 40-year near-surface air temperature (TAS) trend to make Fig. 5 are available at: https://doi.org/10.5281/zenodo.3631549 (ref. 73). Data for Supplementary Fig. 1 are available at: https://doi.org/10.5281/zenodo.3631409 (ref. 74). The model data for calculation of these 40-year TAS trends are downloaded from: https://esgf-node.llnl.gov/projects/cmip5/ (ref. 72). Files to reproduce Figs. 15 can be found in Supplementary Data.

Code availability

Code used to generate the figures can be downloaded from the project website: https://ice2ice.w.uib.no/publications/ and from GitHub: https://github.com/ice2ice-synthesis/Nature-Climate-Change-perspective.git. Files to reproduce Figs. 15 can be found in Supplementary Data.

References

  1. 1.

    IPCC: Summary for Policymakers. In IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  2. 2.

    IPCC: Summary for Policymakers. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (WMO, 2019).

  3. 3.

    Serreze, M. C. & Stroeve, J. Arctic sea ice trends, variability and implications for seasonal ice forecasting. Philos. Trans. Roy. Soc. 373, 20140159 (2015).

    Google Scholar 

  4. 4.

    Smith, D. M. et al. The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification. Geosci. Model Dev. 12, 1139–1164 (2019).

    Google Scholar 

  5. 5.

    Bhatt, U. S. et al. Implications of Arctic sea ice decline for the Earth system. Annu. Rev. Environ. Resour. 39, 57–89 (2014).

    Google Scholar 

  6. 6.

    Overland, J. E. et al. Nonlinear response of mid-latitude weather to the changing Arctic. Nat. Clim. Change 6, 992–999 (2016).

    Google Scholar 

  7. 7.

    Pedersen, R., Cvijanovic, I., Langen, P. L. & Vinther, B. The impact of regional Arctic sea ice loss on atmospheric circulation and the NAO. J. Clim. 29, 889–902 (2015).

    Google Scholar 

  8. 8.

    Lee, S., Gong, T., Feldstein, S. B., Screen, J. A. & Simmonds, I. Revisiting the cause of the 1989–2009 Arctic surface warming using the surface energy budget: downward infrared radiation dominates the surface fluxes. Geophys. Res. Lett. 44, 10654–10661 (2017).

    Google Scholar 

  9. 9.

    Screen, J. A. et al. Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nat. Geosci. 11, 155–163 (2018).

    CAS  Google Scholar 

  10. 10.

    Krishfield, R. A. et al. Deterioration of perennial sea ice in the Beaufort Gyre from 2003 to 2012 and its impact on the oceanic freshwater cycle. J. Geophys. Res. 119, 1271–1305 (2014).

    Google Scholar 

  11. 11.

    Sévellec, F., Fedorov, A. V. & Liu, W. Arctic sea-ice decline weakens the Atlantic meridional overturning circulation. Nat. Clim. Change 7, 604–610 (2017).

    Google Scholar 

  12. 12.

    Vihma, T. Effects of Arctic sea ice decline on weather and climate: a review. Surv. Geophys. 35, 1175–1214 (2014).

    Google Scholar 

  13. 13.

    Screen, J. The missing Northern European winter cooling response to Arctic sea ice loss. Nat. Commun. 8, 14603 (2017).

    Google Scholar 

  14. 14.

    Ogawa, F. et al. Evaluating impacts of recent Arctic sea ice loss on the Northern Hemisphere winter climate change. Geophys. Res. Lett. 45, 3255–3263 (2018).

    Google Scholar 

  15. 15.

    Arrigo, K. R. & van Dijken, G. L. Secular trends in Arctic Ocean net primary production. J. Geophys. Res. 116, C09011 (2011).

    Google Scholar 

  16. 16.

    Årthun, M. B. et al. Climate based multi-year predictions of the Barents Sea cod stock. PLoS ONE 13, e0206319 (2018).

    Google Scholar 

  17. 17.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc. 137, 553–97 (2011).

    Google Scholar 

  18. 18.

    Dansgaard, W. et al. A new Greenland deep ice core. Nature 218, 1273–1277 (1982). First paper describing in-depth the record of abrupt changes in Greenland ice cores.

    CAS  Google Scholar 

  19. 19.

    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014). Provides a detailed chronology of Greenland ice cores and the D–O events, used for correlations globally.

    Google Scholar 

  20. 20.

    Voelker, A. H. L. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quat. Sci. Rev. 21, 1185–1212 (2002).

    Google Scholar 

  21. 21.

    Johnsen, S. J. et al. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311–313 (1992).

    Google Scholar 

  22. 22.

    Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. J. & Jouzel, J. Comparison of the oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552–554 (1993).

    CAS  Google Scholar 

  23. 23.

    North Greenland Ice Core Project members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).

    Google Scholar 

  24. 24.

    Genty, D. et al. Precise dating of Dansgaard–Oeschger climate oscillations in Western Europe from stalagmite data. Nature 421, 833–837 (2003).

    CAS  Google Scholar 

  25. 25.

    Deplazes, G. et al. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat. Geosci. 6, 213–217 (2013).

    CAS  Google Scholar 

  26. 26.

    WAIS Divide Project Members. Precise interpolar phasing of abrupt climate change during the last ice age. Nature 520, 661–665 (2015).

    Google Scholar 

  27. 27.

    Ganopolski, A. & Rahmstorf, S. Simulation of rapid glacial climate changes in a coupled climate model. Nature 409, 153–158 (2001).

    CAS  Google Scholar 

  28. 28.

    Masson-Delmotte, V. et al. in Climate Change 2013: The PhysicalScience Basis (eds Stocker, T. F. et al.) Ch. 4 (IPCC, Cambridge Univ. Press, 2013).

  29. 29.

    Gildor, H. & Tziperman, E. Sea-ice switches and abrupt climate change. Philos. T. Roy. Soc. A 36, 1935–1944 (2003). Key publication stating the potential role of sea-ice change to cause abrupt climate shifts.

    Google Scholar 

  30. 30.

    Li, C., Battisti, D. S. & Bitz, C. M. Can North Atlantic sea ice anomalies account for Dansgaard‐Oeschger climate signals? J. Clim. 23, 5457–5475 (2010).

    Google Scholar 

  31. 31.

    Dokken, T. M., Nisancioglu, K. H., Li, C., Battisti, D. S. & Kissel, C. Dansgaard-Oeschger cycles: interactions between ocean and sea ice intrinsic to the Nordic seas. Paleoceanography 28, 491–502 (2013). Key reference for conceptual model and empirical evidence on the interplay between sea-ice cover, ocean stratification changes and abrupt warming.

    Google Scholar 

  32. 32.

    Vettoretti, G. & Peltier, W. R. Thermohaline instability and the formation of glacial North Atlantic super polynyas at the onset of Dansgaard‐Oeschger warming events. Geophys. Res. Lett. 43, 5336–5344 (2016).

    Google Scholar 

  33. 33.

    Sadatzki, H. et al. Sea ice variability in the southern Norwegian Sea during glacial Dansgaard-Oeschger climate cycles. Sci. Adv. 5, eaau6174 (2019). Documenting at high temporal resolution the phasing of first sea-ice diminution and a subsequent abrupt warming.

    CAS  Google Scholar 

  34. 34.

    Li, C. & Born, A. Coupled atmosphere-ice-ocean dynamics in Dansgaard-Oeschger events. Quat. Sci. Rev. 203, 1–20 (2019).

    Google Scholar 

  35. 35.

    Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. & Bender, M. L. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–146 (1998).

    CAS  Google Scholar 

  36. 36.

    Landais, A. et al. A continuous record of temperature evolution over a sequence of Dansgaard-Oeschger events during Marine Isotopic Stage 4 (76 to 62 kyr BP). Geophys. Res. Lett. 31, L22211 (2004).

    Google Scholar 

  37. 37.

    Huber, C. et al. Isotope calibrated Greenland temperature record over Marine Isotope Stage 3 and its relation toCH4. Earth Planet. Sc. Lett. 243, 504–519 (2006).

    CAS  Google Scholar 

  38. 38.

    Kindler, P. et al. Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core. Clim Past 10, 887–902 (2014).

    Google Scholar 

  39. 39.

    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

    Google Scholar 

  40. 40.

    Meinshausen, M. S. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).

    CAS  Google Scholar 

  41. 41.

    Seierstad, I. K. et al. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quat. Sci. Rev. 106, 29–46 (2014).

    Google Scholar 

  42. 42.

    Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Comm. Appl. Math. Comput. Sci. 5, 65–80 (2010).

    Google Scholar 

  43. 43.

    Steffensen, J. P. et al. High resolution Greenland ice core data show abruptclimate change happens in few years. Science 321, 680–684 (2008).

    CAS  Google Scholar 

  44. 44.

    Erhardt, T. et al. Decadal-scale progression of the onset of Dansgaard–Oeschger warming events. Clim. Past 15, 811–825 (2019).

    Google Scholar 

  45. 45.

    Bentsen, M. et al. The Norwegian Earth System Model, NorESM1-M – Part 1: description and basic evaluation of the physical climate. Geosci. Model Dev. 6, 687–720 (2013).

    Google Scholar 

  46. 46.

    Guo, C. et al. Description and evaluation of NorESM1-F: a fast version of the Norwegian Earth System Model (NorESM). Geosci. Model Dev. 12, 343–362 (2019).

    CAS  Google Scholar 

  47. 47.

    Guo, C., Nisancioglu, K. H., Bentsen, M., Bethke, I. & Zhang, Z. Equilibrium simulations of Marine Isotope Stage 3 climate. Clim. Past 15, 1133–1151 (2019).

    Google Scholar 

  48. 48.

    Guo, C. NorESM1-F simulation of the Marine Isotope Stage 3 stadial-to-interstadial transition (Chuncheng Guo, NORCE, accessed 15 July 2020); https://doi.org/10.11582/2020.00006

  49. 49.

    Jensen, M. F., Nilsson, J. & Nisancioglu, K. H. The interaction between sea ice and salinity-dominated ocean circulation: implications for halocline stability and rapid changes of sea ice cover. Clim. Dynam. 47, 3301–3317 (2016).

    Google Scholar 

  50. 50.

    Jensen, M. F., Nisancioglu, K. H. & Spall, M. A. Large changes in sea ice triggered by small changes in Atlantic water temperature. J. Clim. 31, 4847–4863 (2018). Model experiments that indicate high sensitivity of ocean stratification and its potential to create abrupt sea-ice loss.

    Google Scholar 

  51. 51.

    Kaspi, Y., Sayag, R. & Tziperman, E. A “triple sea-ice state” mechanism for the abrupt warming and synchronous ice sheet collapses during Heinrich events. Paleoceanography 19, PA3004 (2004).

    Google Scholar 

  52. 52.

    Peltier, W. R. & Vettoretti, G. Dansgaard‐Oeschger oscillations predicted in a comprehensive model of glacial climate: a “kicked” salt oscillator in the Atlantic. Geophys. Res. Lett. 41, 7306–7313 (2014).

    Google Scholar 

  53. 53.

    Menviel, L., Timmermann, A., Friedrich, T. & England, M. H. Hindcasting the continuum of Dansgaard-Oeschger variability: mechanisms, patterns and timing. Clim. Past 10, 63–77 (2014).

    Google Scholar 

  54. 54.

    Vettoretti, G. & Peltier, W. R. Interhemispheric air temperature phase relationships in the nonlinear Dansgaard‐Oeschger oscillation. Geophys. Res. Lett. 42, 1180–1189 (2015).

    Google Scholar 

  55. 55.

    Drijfhout, S., Gleeson, E., Dijkstra, H. A. & Livina, V. Spontaneous abrupt climate change. Proc. Natl Acad. Sci. USA 110, 19713–19718 (2013).

    CAS  Google Scholar 

  56. 56.

    Kleppin, H., Jochum, M., Otto-Bliesner, B., Shields, C. A. & Yeager, S. Stochastic atmospheric forcing as a cause of Greenland climate transitions. J. Clim. 28, 7741–7763 (2015).

    Google Scholar 

  57. 57.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. B. Am. Meteorol. Soc. 93, 485–498 (2011).

    Google Scholar 

  58. 58.

    Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).

  59. 59.

    Flato, G. et al. In IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  60. 60.

    Gregory, J. M. et al. A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett. 31, L03205 (2004).

    Google Scholar 

  61. 61.

    National Research Council. Abrupt Climate Change: Inevitable Surprises (National Academies Press, 2002).

  62. 62.

    Pedersen, R. A. & Christensen, J. H. Attributing Greenland warming patterns to regional Arctic sea ice loss. Geophys. Res. Lett. 46, 10495–10503 (2019). Shows that central Greenland temperatures at present are not particularly sensitive to regional Arctic sea-ice loss and associated warming.

    Google Scholar 

  63. 63.

    Sessford, E. G. et al. Consistent fluctuations in intermediate water temperature off the coast of Greenland and Norway during Dansgaard-Oeschger events. Quat. Sci. Rev. 223, 105887 (2019).

    Google Scholar 

  64. 64.

    Aagaard, K. & Carmack, E. C. The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res. 94, 14485–14498 (1989).

    Google Scholar 

  65. 65.

    Aagaard, K., Coachman, L. K. & Carmack, E. On the halocline of the Arctic Ocean. Deep-Sea Res. 28A, 529–545 (1981).

    Google Scholar 

  66. 66.

    Ilıcak, M. et al. An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: hydrography and fluxes. Ocean Model. 100, 141–161 (2016). Shows that climate models have major shortcomings in their capability to simulate Arctic Ocean circulation.

    Google Scholar 

  67. 67.

    Lind, S., Ingvaldsen, R. B. & Furevik, T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Change 8, 634–639 (2018). Documents the ongoing ‘Atlantification’ of the Arctic north of Europe.

    Google Scholar 

  68. 68.

    Årthun, M., Eldevik, T. & Smedsrud, L. H. The role of Atlantic heat transport in future Arctic winter sea ice loss. J. Clim. 32, 4121–4143 (2019).

    Google Scholar 

  69. 69.

    Sessford, E. G. et al. High-resolution benthic Mg/Ca temperature record of the intermediate water in the Denmark strait across D-O stadial-interstadial cycles. Paleoceanogr. Paleocl. 33, 1169–1185 (2018).

    CAS  Google Scholar 

  70. 70.

    ERA-Interim (European Centre for Medium-range Weather Forecast, accessed 9 February 2020); https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim

  71. 71.

    GICC05modelext time scale for the NGRIP ice core (Sune Olander Rasmussen, NBI, accessed 15 July 2020); http://www.iceandclimate.nbi.ku.dk/data/2010-11-19_GICC05modelext_for_NGRIP.xls

  72. 72.

    Coupled Model Intercomparison Project 5 (CMIP5) (US Department of Energy, Lawrence Livermore National Laboratory, accessed 15 July 2020); https://esgf-node.llnl.gov/projects/cmip5/

  73. 73.

    Time series of annual TAS 40-year trend from historical to future in CMIP5 model simulations (Shuting Yang, DMI, accessed 17 July 2020); https://doi.org/10.5281/zenodo.3631549

  74. 74.

    Time series of Area mean TAS 40-year trend from historical to future in CMIP5 model simulations (Shuting Yang, DMI, accessed 17 July 2020); https://doi.org/10.5281/zenodo.3631409

  75. 75.

    Vinther, B. et al. Holocene thinning of the Greenland ice sheet. Nature 461, 385–388 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from a Synergy Grant from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC (grant agreement 610055) as part of the ice2ice project. We thank our ice2ice colleagues for fruitful discussions and encouragement. E.C. acknowledges support from the Chronoclimate project funded by the Carlsberg Foundation. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global organization for Earth System Science Portals.

Author information

Affiliations

Authors

Contributions

E.J., J.H.C., T.D., K.H.N. and B.M.V. developed the synopsis and drafted the manuscript with input from P.L.L. C.G., K.H.N., M.S., B.M.V., S.Y. and M.S. provided the figures. M.B., C.G., E.C., M.F.J., H.A.K., H.S. and E.S. provided model and observational data. All authors contributed to the writing and revision of the text. E.J. coordinated the drafting of the manuscript and the final version.

Corresponding author

Correspondence to Eystein Jansen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1 and 2, Figs. 1 and 2, and Tables 1 and 2.

Supplementary Data 1

Source data for Fig. 1. Raw data from ECWMF ERA-Interim.

Supplementary Data 2

Source data for Fig. 2. Time series data in Excel format.

Supplementary Data 3

Source data for Fig. 3. Time series data in text format.

Supplementary Data 4

Source data for Fig. 4. Model output data in NetCDF format.

Supplementary Data 5

Source data for Fig. 5. Time series from models in ascii format.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jansen, E., Christensen, J.H., Dokken, T. et al. Past perspectives on the present era of abrupt Arctic climate change. Nat. Clim. Chang. 10, 714–721 (2020). https://doi.org/10.1038/s41558-020-0860-7

Download citation