Economic and social constraints on reforestation for climate mitigation in Southeast Asia

Abstract

As climate change continues to threaten human and natural systems, the search for cost-effective and practical mitigation solutions is gaining momentum. Reforestation has recently been identified as a promising nature-based climate solution. Yet there are context-dependent biophysical, financial, land-use and operational constraints to reforestation that demand careful consideration. Here, we show that 121 million ha of presently degraded land in Southeast Asia, a region noted for its significant reforestation potential, are biophysically suitable for reforestation. Reforestation of this land would contribute 3.43 ± 1.29 PgCO2e yr−1 to climate mitigation through 2030. However, by taking a combination of on-the-ground financial, land use and operational constraints into account, we find that only a fraction of that mitigation potential may be achievable (0.3–18%). Such constraints are not insurmountable, but they show that careful planning and consideration are needed for effective landscape-scale reforestation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Climate mitigation potential of reforestation in Southeast Asia under biophysical, financial, land-use and operational constraints.

Data availability

Datasets used for the analyses are available from https://doi.org/10.25909/5ed71bd305a08.

Code availability

R scripts used for the analyses are available from https://doi.org/10.25909/5ed71bd305a08.

References

  1. 1.

    Tollefson, J. The hard truths of climate change—by the numbers. Nature 573, 324–327 (2019).

    CAS  Google Scholar 

  2. 2.

    Rogelj, J. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 2 (IPCC, WMO, 2018).

  3. 3.

    Egli, F. & Stunzi, A. A dynamic climate finance allocation mechanism reflecting the Paris Agreement. Environ. Res. Lett. 14, 114024 (2019).

    Google Scholar 

  4. 4.

    Griscom, B. W. et al. We need both natural and energy solutions to stabilize our climate. Glob. Change Biol. 25, 1889–1890 (2019).

    Google Scholar 

  5. 5.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS  Google Scholar 

  6. 6.

    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2015).

    Google Scholar 

  7. 7.

    Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).

    Google Scholar 

  8. 8.

    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    CAS  Google Scholar 

  9. 9.

    Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).

    CAS  Google Scholar 

  10. 10.

    Luedeling, E. et al. Forest restoration: overlooked constraints. Science 366, 315 (2019).

    Google Scholar 

  11. 11.

    Chazdon, R. & Brancalion, P. Restoring forests as a means to many ends. Science 365, 24–25 (2019).

    CAS  Google Scholar 

  12. 12.

    Cohn, A. S. et al. Smallholder agriculture and climate change. Annu. Rev. Environ. Resour. 42, 347–375 (2017).

    Google Scholar 

  13. 13.

    Lazos-Chavero, E. et al. Stakeholders and tropical reforestation: challenges, trade-offs, and strategies in dynamic environments. Biotropica 48, 900–914 (2016).

    Google Scholar 

  14. 14.

    Barr, C. M. & Sayer, J. A. The political economy of reforestation and forest restoration in Asia–Pacific: critical issues for REDD. Biol. Conserv. 154, 9–19 (2012).

    Google Scholar 

  15. 15.

    Wilson, K. A. et al. Optimal restoration: accounting for space, time and uncertainty. J. Appl. Ecol. 48, 715–725 (2011).

    Google Scholar 

  16. 16.

    Kettle, C. J. Ecological considerations for using dipterocarps for restoration of lowland rainforest in Southeast Asia. Biodivers. Conserv. 19, 1137–1151 (2010).

    Google Scholar 

  17. 17.

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    CAS  Google Scholar 

  18. 18.

    Estoque, R. C. et al. The future of Southeast Asia’s forests. Nat. Commun. 10, 1829 (2019).

    Google Scholar 

  19. 19.

    Hengl, T. et al. Global mapping of potential natural vegetation: an assessment of machine learning algorithms for estimating land potential. PeerJ 6, e5457 (2018).

    Google Scholar 

  20. 20.

    Budiharta, S. et al. Restoring degraded tropical forests for carbon and biodiversity. Environ. Res. Lett. 9, 114020 (2014).

    Google Scholar 

  21. 21.

    Oakleaf, J. R. et al. Mapping global development potential for renewable energy, fossil fuels, mining and agriculture sectors. Sci. Data 6, 101 (2019).

    Google Scholar 

  22. 22.

    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).

    CAS  Google Scholar 

  23. 23.

    Löfqvist, S. & Ghazoul, J. Private funding is essential to leverage forest and landscape restoration at global scales. Nat. Ecol. Evol. 3, 1612–1615 (2019).

    Google Scholar 

  24. 24.

    Meyfroidt, P. & Lambin, E. F. The causes of the reforestation in Vietnam. Land Use Policy 25, 182–197 (2008).

    Google Scholar 

  25. 25.

    Chazdon, R. L. & Guariguata, M. R. Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica 48, 716–730 (2016).

    Google Scholar 

  26. 26.

    Chazdon, R. L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460 (2008).

    CAS  Google Scholar 

  27. 27.

    Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).

    Google Scholar 

  28. 28.

    Sheil, D. et al. Forest restoration: transformative trees. Science 366, 316–317 (2019).

    Google Scholar 

  29. 29.

    Delzeit, R. et al. Forest restoration: expanding agriculture. Science 366, 316–317 (2019).

    Google Scholar 

  30. 30.

    Strassburg, B. B. N. et al. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 3, 62–70 (2019).

    Google Scholar 

  31. 31.

    National Inventory Submissions 2019 (UNFCCC, 2019); https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-annex-i-parties/national-inventory-submissions-2019

  32. 32.

    Crouzeilles, R. et al. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, e12709 (2020).

    Google Scholar 

  33. 33.

    Financing Emission Reductions for the Future: State of Voluntary Carbon Markets 2019 (Forest Trends’ Ecosystem Marketplace, 2019).

  34. 34.

    Tobón, W. et al. Restoration planning to guide Aichi targets in a megadiverse country. Conserv. Biol. 31, 1086–1097 (2017).

    Google Scholar 

  35. 35.

    Griggs, D. et al. Sustainable development goals for people and planet. Nature 495, 305–307 (2013).

    Google Scholar 

  36. 36.

    Miettinen, J. & Liew, S. C. Degradation and development of peatlands in Peninsular Malaysia and in the islands of Sumatra and Borneo since 1990. Land Degrad. Dev. 21, 285–296 (2010).

    Google Scholar 

  37. 37.

    Miettinen, J., Shi, C. & Liew, S. C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67–78 (2016).

    Google Scholar 

  38. 38.

    Bunting, P. et al. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).

    Google Scholar 

  39. 39.

    Land Cover CCI Product User Guide Version 2 (ESA, 2017); http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf

  40. 40.

    Graham, V., Laurance, S. G., Grech, A. & Venter, O. Spatially explicit estimates of forest carbon emissions, mitigation costs and REDD+ opportunities in Indonesia. Environ. Res. Lett. 12, 044017 (2017).

    Google Scholar 

  41. 41.

    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).

    Google Scholar 

  42. 42.

    Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420 (2016).

    Google Scholar 

  43. 43.

    Worthington, T. & Spalding, M. Mangrove Restoration Potential: A Global Map Highlighting a Critical Opportunity (Univ. Cambridge, 2018); https://doi.org/10.17863/CAM.39153

  44. 44.

    Miettinen, J., Shi, C. & Liew, S. C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol. 17, 2261–2270 (2011).

    Google Scholar 

  45. 45.

    Miettinen, J., Shi, C. & Liew, S. C. 2015 Land cover map of Southeast Asia at 250 m spatial resolution. Remote Sens. Lett. 7, 701–710 (2016).

    Google Scholar 

  46. 46.

    Friedlingstein, P., Allen, M., Canadell, J. G., Peters, G. P. & Seneviratne, S. I. Comment on ‘The global tree restoration potential’. Science 366, eaay8060 (2019).

    Google Scholar 

  47. 47.

    Veldman, J. W. et al. Comment on ‘The global tree restoration potential’. Science 366, eaay7976 (2019).

    Google Scholar 

  48. 48.

    Buendia, C. et al. (eds) 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 4: Agriculture, Forestry and Other Land Use (IPCC, 2019).

  49. 49.

    Fritz, S. et al. Mapping global cropland and field size. Glob. Change Biol. 21, 1980–1992 (2015).

    Google Scholar 

  50. 50.

    Requena Suarez, D. et al. Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data. Glob. Change Biol. 25, 3609–3624 (2019).

    Google Scholar 

  51. 51.

    Cameron, C., Hutley, L. B., Friess, D. A. & Brown, B. High greenhouse gas emissions mitigation benefits from mangrove rehabilitation in Sulawesi, Indonesia. Ecosyst. Serv. 40, 101035 (2019).

    Google Scholar 

  52. 52.

    World Development Report 2013: Jobs (World Bank, 2012).

  53. 53.

    The World Bank Annual Report 2018 (World Bank, 2018).

  54. 54.

    FAOSTAT (FAO, 2017); http://www.fao.org/faostat/en/#data

  55. 55.

    Producer Prices-Annua (FAO, 2017); http://www.fao.org/faostat/en/#data/PP

  56. 56.

    Global Agro-Ecological Zones: Suitability and Potential Yield — Agro-Climatic Yield (International Institute for Applied Systems Analysis, 2015); http://gaez.fao.org/Main.html#

  57. 57.

    Employment by Sex and Age—ILO Modelled Estimates (International Labour Organization, 2014); https://ilostat.ilo.org/data

  58. 58.

    World Development Indicators (The World Bank, 2018); http://data.worldbank.org/data-catalog/world-development-indicators

  59. 59.

    Naylor, R. L., Higgins, M. M., Edwards, R. B. & Falcon, W. P. Decentralization and the environment: assessing smallholder oil palm development in Indonesia. Ambio 48, 1195–1208 (2019).

    Google Scholar 

  60. 60.

    Hewson, J., Crema, S. C., González-Roglich, M., Tabor, K. & Harvey, C. A. New 1 km resolution datasets of global and regional risks of tree cover loss. Land 8, 14 (2019).

    Google Scholar 

  61. 61.

    The World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, 2016); http://protectedplanet.net

  62. 62.

    Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).

    CAS  Google Scholar 

  63. 63.

    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).

    Google Scholar 

  64. 64.

    Page, S. E. et al. Review of Peat Surface Greenhouse Gas Emissions from Oil Palm Plantations in Southeast Asia White Paper No. 15 (International Council on Clean Transportation, 2011).

  65. 65.

    Reijnders, L. & Huijbregts, M. A. J. Palm oil and the emission of carbon-based greenhouse gases. J. Clean. Prod. 16, 477–482 (2008).

    Google Scholar 

  66. 66.

    Saragi-Sasmito, M. F., Murdiyarso, D., June, T. & Sasmito, S. D. Carbon stocks, emissions, and aboveground productivity in restored secondary tropical peat swamp forests. Mitig. Adapt. Strateg. Glob. Change 24, 521–533 (2019).

    Google Scholar 

  67. 67.

    R v.3.6.0 (R Foundation for Statistical Computing, 2019).

  68. 68.

    Hijmans, R. J. et al. raster: Geographic data analysis and modeling. R package v.2.5-8.

  69. 69.

    QGIS Geographic Information System Version 2.14 (Open Source Geospatial Foundation Project, 2019); http://qgis.org

Download references

Acknowledgements

Z.Y. and L.R.C. acknowledge support from the National Research Foundation (NRF) Singapore under its Commonwealth Research Fellowship grant (NRF-CSC-ICFC2017–05). L.P.K. is supported by the NRF Singapore under its NRF Returning Singaporean Scientists Scheme (NRF-RSS2019-007). T.W. was supported by the International Climate Initiative (IKI) funded by The German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) on the basis of a decision adopted by the German Bundestag and an anonymous gift to The Nature Conservancy.

Author information

Affiliations

Authors

Contributions

All authors contributed to the manuscript writing. L.P.K. conceived the study. Z.Y. and T.V.S. conducted the analyses and initial evaluation of results. All authors contributed discussions and modelling insights. T.W., P.T. and D.A.F. contributed key mangrove datasets, and Z.Y. and L.R.C. contributed key terrestrial and peat-swamp datasets.

Corresponding authors

Correspondence to Yiwen Zeng or Tasya Vadya Sarira or Lian Pin Koh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Reviewer recognition Nature Climate Change thanks Robin Chazdon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary References, Tables 1–5 and Figs. 1–8.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Sarira, T.V., Carrasco, L.R. et al. Economic and social constraints on reforestation for climate mitigation in Southeast Asia. Nat. Clim. Chang. 10, 842–844 (2020). https://doi.org/10.1038/s41558-020-0856-3

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing