Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reconciling theory with the reality of African heatwaves

Extreme weather damage databases report no significant heatwave impacts in sub-Saharan Africa since 1900, yet the region has experienced a number of heatwaves and will be affected disproportionately by them under climate change. Addressing this reporting discrepancy is crucial to assess the impacts of future extreme heat there.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Extreme heat during the 1991/1992 Southern Africa drought.


  1. 1.

    Leach, N. J. et al. Nat. Geosci. 11, 574–579 (2018).

    CAS  Article  Google Scholar 

  2. 2.

    Herold, N., Alexander, L., Green, D. & Donat, M. Environ. Res. Lett. 12, 034007 (2017).

    Article  Google Scholar 

  3. 3.

    Perkins-Kirkpatrick, S. E. & Gibson, P. B. Sci. Rep. 7, 12256 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Allen, M. R. et al. Nature 458, 1163–1166 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Mora, C. et al. Nat. Clim. Change 7, 501–506 (2017).

    Article  Google Scholar 

  6. 6.

    Russo, S., Marchese, A. F., Sillmann, J. & Immé, G. Environ. Res. Lett. 11, 054016 (2016).

    Article  Google Scholar 

  7. 7.

    Harrington, L. J., Frame, D. J., Hawkins, E. & Joshi, M. Environ. Res. Lett. 12, 114039 (2017).

    Article  Google Scholar 

  8. 8.

    EM-DAT: The International Disaster Database (CRED, accessed 26 March 2020);

  9. 9.

    Guha-Sapir, D., Hoyois, P. & Below, R. Annual Disaster Statistical Review 2015: The Numbers and Trends (Centre for Research on the Epidemiology of Disasters (CRED), Institute of Health and Society (IRSS) and Université catholique de Louvain, 2016).

  10. 10.

    Tschumi, E. & Zscheischler, J. Clim. Change 158, 593–609 (2020).

    Article  Google Scholar 

  11. 11.

    Sillmann, J., Russo, S., Sippel, S. & Alnes, K. Bull. Am. Meteorol. Soc. 99, 1689–1693 (2018).

  12. 12.

    Andrijevic, M., Crespo Cuaresma, J., Muttarak, R. & Schleussner, C.-F. Nat. Sustain. 3, 35–41 (2020).

    Article  Google Scholar 

  13. 13.

    Lee, W. V. Nat. Hazards 70, 1453–1505 (2014).

    Article  Google Scholar 

  14. 14.

    Robine, J.-M. et al. Doss. Nouv. En Cancérog. New Dev. Carcinog. 331, 171–178 (2008).

    Google Scholar 

  15. 15.

    Campbell, S., Remenyi, T. A., White, C. J. & Johnston, F. H. Health Place 53, 210–218 (2018).

    Article  Google Scholar 

  16. 16.

    Hajat, S., O’Connor, M. & Kosatsky, T. The Lancet 375, 856–863 (2010).

    Article  Google Scholar 

  17. 17.

    Public Health England. PHE heatwave mortality monitoring. The UK Government (2019).

  18. 18.

    Donat, M. G. et al. J. Geophys. Res.-Atmos. 118, 2098–2118 (2013).

    Article  Google Scholar 

  19. 19.

    Gasparrini, A. et al. The Lancet 386, 369–375 (2015).

    Article  Google Scholar 

  20. 20.

    Zscheischler, J. & Seneviratne, S. I. Sci. Adv. 3, e1700263 (2017).

    Article  Google Scholar 

  21. 21.

    Benson, C. & Clay, E. The Impact of Drought on Sub-Saharan African Economies (The World Bank, 1998).

  22. 22.

    The Impact of Disasters on Agriculture and Food Security (Food and Agriculture Organization of the United Nations, 2015).

  23. 23.

    Angélil, O. et al. Weather Clim. Extrem. 13, 35–43 (2016).

    Article  Google Scholar 

  24. 24.

    Conway, D. et al. Nat. Clim. Change 9, 503–511 (2019).

    Article  Google Scholar 

  25. 25.

    Wiru, K. et al. Environ. Epidemiol. 3, 295–296 (2019).

    Article  Google Scholar 

  26. 26.

    Bonell, A. et al. Wellcome Open Res. (in the press).

  27. 27.

    Steffen, W., Mallon, K., Kompas, T., Dean, A. & Rice, M. R. Compound Costs: How Climate Change is Damaging Australia’s Economy (2019);

  28. 28.

    Fouillet, A. et al. Int. J. Epidemiol. 37, 309–317 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    Sheridan, S. C. & Allen, M. J. Environ. Res. Lett. 13, 043001 (2018).

    Article  Google Scholar 

  30. 30.

    Lopez, A. et al. Weather Clim. Extrem. 27, 100167 (2018).

    Article  Google Scholar 

  31. 31.

    Hess, J. J. et al. J. Environ. Res. Public Health 2018, 7973519 (2018).

    Google Scholar 

  32. 32.

    Hersbach, H. et al. Q. J. R. Meteorol. Soc. (2020).

Download references


The authors acknowledge the European Centre for Medium-Range Weather Forecasts for the provision of ERA5 data, which can be freely accessed via the Copernicus Climate Change Service Climate Data Store (!/home), and thank the Center for Research on the Epidemiology of Disasters (CRED) for the provision of EM-DAT data, which can be freely accessed for non-commercial use via The authors acknowledge support from the FORMAS project 2018-02800, entitled ‘Global Attribution Models, Mediation and Mobilisation (GAMES)’.

Author information



Corresponding author

Correspondence to Luke J. Harrington.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harrington, L.J., Otto, F.E.L. Reconciling theory with the reality of African heatwaves. Nat. Clim. Chang. 10, 796–798 (2020).

Download citation

Further reading


Quick links