Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Warming trends increasingly dominate global ocean

Abstract

The ocean takes up about 93% of the global warming heat entering Earth’s climate system. In addition, the associated thermal expansion contributes substantially to sea-level rise. Hence, quantifying the oceanic heat uptake rate and its statistical significance has been a research focus. Here we use gridded ocean heat content maps to examine regional trends in ocean warming for 0–700 m depth from 1993–2019 and 1968–2019, periods based on sampling distributions. The maps are from four research groups, three based on ocean temperature alone and one combining ocean temperature with satellite altimeter sea-level anomalies. We show that use of longer periods results in larger percentages of ocean area with statistically significant warming trends and less ocean area covered by statistically significant cooling trends. We discuss relations of these patterns to climate phenomena, including the Pacific Decadal Oscillation, the Atlantic Meridional Overturning Circulation and global warming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Upper-ocean heat content anomaly linear trends for 1993–2019.
Fig. 2: Upper-ocean heat content anomaly linear trends for 1968–2019.
Fig. 3: Mean fractions of the global ocean surface area with trends of upper-ocean heat content that are statistically significantly different from zero.

Similar content being viewed by others

Data availability

The Ssalto/Duacs global maps of satellite-altimeter-derived sea-surface height anomalies used for the PMEL maps were downloaded in January 2019 and can be accessed at https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global.html. The in situ Argo data used for the PMEL maps (https://doi.org/10.17882/42182#61117) were downloaded from the US Argo Global Data Assembly Center in January 2019 and can be accessed at https://www.usgodae.org//argo/argo.html. The historical in situ temperature data other than Argo used for the PMEL maps were EN3 v2a from www.metoffice.gov.uk/hadobs. This version has been superseded, but historical non-Argo data in later versions are very similar. The ocean heat content maps from JMA can be accessed at https://www.data.jma.go.jp/gmd/kaiyou/english/ohc/ohc_global_en.html, those from IAP at http://159.226.119.60/cheng/ and those from NCEI at https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/.

References

  1. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  2. Cazenave, A. et al. Global sea-level budget 1993–present. Earth Syst. Sci. Data 10, 1551–1590 (2018).

    Article  Google Scholar 

  3. Meyssignac, B. et al. Measuring global ocean heat content to estimate the Earth energy imbalance. Front. Mar. Sci. 6, 432 (2019).

    Article  Google Scholar 

  4. Johnson, G. C., Lyman, J. M. & Loeb, N. G. Improving estimates of Earth’s energy imbalance. Nat. Clim. Change 6, 639–640 (2016).

    Article  Google Scholar 

  5. Roemmich, D. et al. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change 5, 240–245 (2015).

    Article  Google Scholar 

  6. Wijffels, S., Roemmich, D., Monselesan, D., Church, J. & Gilson, J. Ocean temperatures chronicle the ongoing warming of Earth. Nat. Clim. Change 6, 116–118 (2016).

    Article  Google Scholar 

  7. Abraham, J. P. et al. A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev. Geophys. 51, 450–483 (2013).

    Article  Google Scholar 

  8. Lyman, J. M. & Johnson, G. C. Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice. J. Clim. 27, 1945–1957 (2014).

    Article  Google Scholar 

  9. Roemmich, D. et al. On the future of Argo: a global, full-depth, multi-disciplinary array. Front. Mar. Sci. 6, 439 (2019).

    Article  Google Scholar 

  10. Johnson, G. C. & Birnbaum, A. N. As El Niño builds, Pacific Warm Pool expands, ocean gains more heat. Geophys. Res. Lett. 44, 438–445 (2017).

    Article  Google Scholar 

  11. Roemmich, D. & Gilson, J. The global ocean imprint of ENSO. Geophys. Res. Lett. 38, L13606 (2011).

    Article  Google Scholar 

  12. Palanisamy, H., Meyssignac, B., Cazenave, A. & Delcroix, T. Is anthropogenic sea level fingerprint already detectable in the Pacific Ocean? Environ. Res. Lett. 10, 084024 (2015).

    Article  Google Scholar 

  13. Wills, R. C. J. et al. Ocean circulation signatures of North Pacific decadal variability. Geophys. Res. Lett. 46, 1690–1701 (2019).

    Article  Google Scholar 

  14. Kenigson, J. S., Han, W. Q., Rajagopalan, B., Yanto & Jasinsk, M. Decadal shift of NAO-linked interannual sea level variability along the US northeast coast. J. Clim. 31, 4981–4989 (2018).

  15. Roemmich, D., Gilson, J., Sutton, P. & Zilberman, N. Multidecadal change of the South Pacific Gyre circulation. J. Phys. Oceanogr. 46, 1871–1883 (2016).

    Article  Google Scholar 

  16. Carson, M. & Harrison, D. E. Regional interdecadal variability in bias-corrected ocean temperature data. J. Clim. 23, 2847–2855 (2010).

    Article  Google Scholar 

  17. Richter, K. & Marzeion, B. Earliest local emergence of forced dynamic and steric sea-level trends in climate models. Environ. Res. Lett. 9, 114009 (2014).

    Article  Google Scholar 

  18. Blunden, J. & Arndt, D. S. State of the climate in 2018. Bull. Am. Meteorol. Soc. 100, Si–S305 (2019).

    Article  Google Scholar 

  19. Johnson, G. C. et al. in State of the Climate in 2019 (Ed. Lumpkin, R.) S74–S77 (American Meteorological Society, 2019).

  20. Ishii, M. et al. Accuracy of global upper ocean heat content estimation expected from present observational data sets. Sola 13, 163–167 (2017).

    Article  Google Scholar 

  21. Cheng, L. J. et al. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 3, e1601545 (2017).

    Article  Google Scholar 

  22. Levitus, S. et al. World ocean heat content and thermosteric sea level change (0-2000 m), 1955-2010. Geophys. Res. Lett. 39, L10603 (2012).

    Article  Google Scholar 

  23. Wu, L. X. et al. Enhanced warming over the global subtropical western boundary currents. Nat. Clim. Change 2, 161–166 (2012).

    Article  CAS  Google Scholar 

  24. McCarthy, G. D., Joyce, T. M. & Josey, S. A. Gulf Stream variability in the context of quasi-decadal and multidecadal Atlantic climate variability. Geophys. Res. Lett. 45, 11257–11264 (2018).

    Article  Google Scholar 

  25. Wang, Y. L. & Wu, C. R. Discordant multi-decadal trend in the intensity of the Kuroshio along its path during 1993-2013. Sci. Rep. 8, 14633 (2018).

    Article  Google Scholar 

  26. Chen, X. Y. & Tung, K. K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345, 897–903 (2014).

    Article  CAS  Google Scholar 

  27. Liu, W., Xie, S. P. & Lu, J. Tracking ocean heat uptake during the surface warming hiatus. Nat. Commun. 7, 10926 (2016).

    Article  CAS  Google Scholar 

  28. He, C. F., Liu, Z. Y. & Hu, A. X. The transient response of atmospheric and oceanic heat transports to anthropogenic warming. Nat. Clim. Change 9, 222–226 (2019).

    Article  Google Scholar 

  29. Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A. & Newsom, E. R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9, 549 (2016).

    Article  CAS  Google Scholar 

  30. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1079 (1997).

    Article  Google Scholar 

  31. Salinger, M. J., Renwick, J. A. & Mullan, A. B. Interdecadal Pacific Oscillation and South Pacific climate. Int. J. Climatol. 21, 1705–1721 (2001).

    Article  Google Scholar 

  32. Merrifield, M. A. & Maltrud, M. E. Regional sea level trends due to a Pacific trade wind intensification. Geophys. Res. Lett. 38, L21605 (2011).

    Article  Google Scholar 

  33. Hamlington, B. D. et al. An ongoing shift in Pacific Ocean sea level. J. Geophys. Res. Oceans 121, 5084–5097 (2016).

    Article  Google Scholar 

  34. Roxy, M. K., Ritika, K., Terray, P. & Masson, S. The curious case of Indian Ocean warming. J. Clim. 27, 8501–8509 (2014).

    Article  Google Scholar 

  35. Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191 (2018).

    Article  CAS  Google Scholar 

  36. Smeed, D. A. et al. The North Atlantic Ocean Is in a state of reduced overturning. Geophys. Res. Lett. 45, 1527–1533 (2018).

    Article  Google Scholar 

  37. Josey, S. A. et al. The recent Atlantic cold anomaly: causes, consequences, and related phenomena. Annu. Rev. Mar. Sci. 10, 475–501 (2018).

    Article  Google Scholar 

  38. Durack, P. J. et al. Quantifying underestimates of long-term upper-ocean warming. Nat. Clim. Change 4, 999–1005 (2014).

    Article  Google Scholar 

  39. Durack, P. J. et al. Ocean warming: from the surface to the deep in observations and models. Oceanography 31, 41–51 (2018).

    Article  Google Scholar 

  40. Ingleby, B. & Huddleston, M. Quality control of ocean temperature and salinity profiles—historical and real-time data. J. Mar. Syst. 65, 158–175 (2007).

    Article  Google Scholar 

  41. Locarnini, R. A. et al. World Ocean Atlas 2009, Volume 1: Temperature (US Government Printing Office, 2010).

  42. Ishii, M. & Kimoto, M. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr. 65, 287–299 (2009).

    Article  Google Scholar 

  43. Smith, W. H. F. & Sandwell, D. T. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277, 1956–1962 (1997).

    Article  CAS  Google Scholar 

  44. Wunsch, C. The Ocean Circulation Inverse Problem (Cambridge Univ. Press, 1996).

  45. von Storch, H. & Zwiers, F. W. Statistical Analysis in Climate Research (Cambridge Univ. Press, 1999).

Download references

Acknowledgements

G.C.J. and J.M.L. are supported by the Global Ocean Monitoring and Observing programme, National Oceanic and Atmospheric Administration (NOAA), US Department of Commerce and NOAA Research. The Argo data used here were collected and made freely available by the International Argo Program and the national programmes that contribute to it (http://www.argo.ucsd.edu, http://argo.jcommops.org). The Argo Program is part of the Global Ocean Observing System. The Ssalto/Duacs altimeter products were produced and distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS) (http://www.marine.copernicus.eu). We thank chief editor B. Wake for helpful comments and suggestions. The scientific results and conclusions, as well as any views or opinions expressed herein, are those of the authors and do not necessarily reflect the views of NOAA or the Department of Commerce. PMEL Contribution number 4968.

Author information

Authors and Affiliations

Authors

Contributions

G.C.J and J.M.L designed the study. J.M.L. made the calculations and analysed the trends. G.C.J. wrote the manuscript. Both authors contributed to interpreting the results and improving the manuscript.

Corresponding author

Correspondence to Gregory C. Johnson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Karina von Schuckmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Maps of means, standard deviations, and ratios of their magnitudes for the different 0–700 m ocean heat content trend estimates used.

Means of trends for (a) 1993–2019 are contoured over twice the range used for (b) 1968–2019. Similarly, the standard deviations for (c) 1993–2019 trends are contoured over twice the range used for (d) 1968–2019. The ratio of the mean trend magnitudes to their standard deviations are contoured on the same scale for (e) 1993–2019 and (f) 1968–2019. Latitudes are gridded at 30° intervals, and longitudes, centered on 150 °W, at 60° intervals (dotted lines).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, G.C., Lyman, J.M. Warming trends increasingly dominate global ocean. Nat. Clim. Chang. 10, 757–761 (2020). https://doi.org/10.1038/s41558-020-0822-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-020-0822-0

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene