Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Amplified Madden–Julian oscillation impacts in the Pacific–North America region


The Madden–Julian Oscillation (MJO) is a slow-moving tropical mode that produces a planetary-scale envelope of convective storms. By exciting Rossby waves, the MJO creates teleconnections with far-reaching impacts on extratropical circulation and weather. Although recent studies have investigated the response of the MJO to anthropogenic warming, not much is known about potential changes in its teleconnections. Here, we show that the MJO teleconnection pattern in boreal winter will likely extend further eastward over the North Pacific. This is primarily due to an eastward shift in the exit region of the subtropical jet, to which the teleconnection pattern is anchored, and assisted by an eastward extension of the MJO itself. The eastward-extended teleconnection enables the MJO to have a greater impact downstream on the Northeast Pacific and North American west coast. Over California specifically, the multi-model mean projects a 54% increase in MJO-induced precipitation variability by 2100 under a high-emissions scenario.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Eastward-extended teleconnection pattern leads to amplified MJO impacts in the PNA region.
Fig. 2: Responses of the MJO teleconnection to changes in MJO heating and large-scale mean state.
Fig. 3: Eastward extension of the MJO itself.
Fig. 4: Eastward shift of the subtropical jet exit.
Fig. 5: Intermodel scatterplots.

Data availability

The AMIP and CMIP outputs used in this study can be obtained from the CMIP5 and CMIP6 archives at The NOAA interpolated outgoing longwave radiation dataset is available at The NCEP-DOE reanalysis dataset is publicly available at The ECMWF-ERA5 reanalysis dataset is available at

Code availability

The code for MJO-related analyses and the scripts for preparing MJO heating and mean state (for LBM) are available at (10.5281/zenodo.3746868). The LBM code can be requested from the following site:


  1. 1.

    Madden, R. A. & Julian, P. R. Detection of a 40–50 day oscillation in the zonal wind in the tropical pacific. J. Atmos. Sci. 28, 702–708 (1971).

    Google Scholar 

  2. 2.

    Zhang, C. Madden-Julian oscillation. Rev. Geophys. 43, RG2003 (2005).

    Google Scholar 

  3. 3.

    Hoskins, B. J. & Karoly, D. J. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38, 1179–1196 (1981).

    Google Scholar 

  4. 4.

    Matthews, A. J., Hoskins, B. J. & Masutani, M. The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Q. J. R. Meteorol. Soc. 130, 1991–2011 (2004).

    Google Scholar 

  5. 5.

    Seo, K.-H. & Son, S.-W. The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian oscillation during northern winter. J. Atmos. Sci. 69, 79–96 (2011).

    Google Scholar 

  6. 6.

    Zhang, C. Madden–Julian oscillation: bridging weather and climate. Bull. Am. Meteorol. Soc. 94, 1849–1870 (2013).

    Google Scholar 

  7. 7.

    Mori, M. & Watanabe, M. The growth and triggering mechanisms of the PNA: a MJO-PNA coherence. J. Meteorol. Soc. Jpn. 86, 213–236 (2008).

    Google Scholar 

  8. 8.

    Riddle, E. E. et al. The impact of the MJO on clusters of wintertime circulation anomalies over the North American region. Clim. Dyn. 40, 1749–1766 (2013).

    Google Scholar 

  9. 9.

    Cassou, C. Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature 455, 523–527 (2008).

    CAS  Google Scholar 

  10. 10.

    Lin, H., Brunet, G. & Derome, J. An observed connection between the North Atlantic oscillation and the Madden–Julian oscillation. J. Clim. 22, 364–380 (2009).

    Google Scholar 

  11. 11.

    Garfinkel, C. I., Feldstein, S. B., Waugh, D. W., Yoo, C. & Lee, S. Observed connection between stratospheric sudden warmings and the Madden-Julian Oscillation. Geophys. Res. Lett. 39, L18807 (2012).

    Google Scholar 

  12. 12.

    Kang, W. & Tziperman, E. The MJO-SSW teleconnection: interaction between MJO-forced waves and the midlatitude jet. Geophys. Res. Lett. 45, 4400–4409 (2018).

    Google Scholar 

  13. 13.

    Maloney, E. D. & Hartmann, D. L. Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Clim. 13, 1451–1460 (2000).

    Google Scholar 

  14. 14.

    Lorenz, D. J. & Hartmann, D. L. The effect of the MJO on the North American monsoon. J. Clim. 19, 333–343 (2006).

    Google Scholar 

  15. 15.

    Henderson, S. A., Maloney, E. D. & Barnes, E. A. The influence of the Madden–Julian oscillation on northern hemisphere winter blocking. J. Clim. 29, 4597–4616 (2016).

    Google Scholar 

  16. 16.

    Mundhenk, B. D., Barnes, E. A., Maloney, E. D. & Baggett, C. F. Skillful empirical subseasonal prediction of landfalling atmospheric river activity using the Madden–Julian oscillation and quasi-biennial oscillation. npj Clim. Atmos. Sci. 1, 20177 (2018).

    Google Scholar 

  17. 17.

    Johnson, N. C., Collins, D. C., Feldstein, S. B., L’Heureux, M. L. & Riddle, E. E. Skillful wintertime North American temperature forecasts out to 4 weeks based on the state of ENSO and the MJO. Weath. Forecast 29, 23–38 (2013).

    Google Scholar 

  18. 18.

    Raymond, D. J. & Fuchs, Ž. Moisture modes and the Madden–Julian oscillation. J. Clim. 22, 3031–3046 (2009).

    Google Scholar 

  19. 19.

    Sobel, A. & Maloney, E. Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci. 70, 187–192 (2012).

    Google Scholar 

  20. 20.

    Yang, D. & Ingersoll, A. P. Triggered convection, gravity waves, and the MJO: a shallow-water model. J. Atmos. Sci. 70, 2476–2486 (2013).

    Google Scholar 

  21. 21.

    Adames, Á. F. & Kim, D. The MJO as a dispersive, convectively coupled moisture wave: theory and observations. J. Atmos. Sci. 73, 913–941 (2015).

    Google Scholar 

  22. 22.

    Khairoutdinov, M. F. & Emanuel, K. Intraseasonal variability in a cloud-permitting near-global equatorial aquaplanet model. J. Atmos. Sci. 75, 4337–4355 (2018).

    Google Scholar 

  23. 23.

    Kim, D. et al. Application of MJO simulation diagnostics to climate models. J. Clim. 22, 6413–6436 (2009).

    Google Scholar 

  24. 24.

    Jiang, X. et al. Vertical structure and physical processes of the Madden-Julian oscillation: exploring key model physics in climate simulations. J. Geophys. Res. Atmos. 120, 4718–4748 (2015).

    Google Scholar 

  25. 25.

    Ahn, M.-S. et al. MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis. Clim. Dyn. 49, 4023–4045 (2017).

    Google Scholar 

  26. 26.

    Wang, B. et al. Dynamics-oriented diagnostics for the Madden–Julian oscillation. J. Clim. 31, 3117–3135 (2018).

    Google Scholar 

  27. 27.

    Liu, P. et al. MJO change with A1B global warming estimated by the 40-km ECHAM5. Clim. Dyn. 41, 1009–1023 (2013).

    Google Scholar 

  28. 28.

    Arnold, N. P., Branson, M., Kuang, Z., Randall, D. A. & Tziperman, E. MJO intensification with warming in the superparameterized CESM. J. Clim. 28, 2706–2724 (2015).

    Google Scholar 

  29. 29.

    Adames, Á. F., Kim, D., Sobel, A. H., Genio, A. D. & Wu, J. Changes in the structure and propagation of the MJO with increasing CO2. J. Adv. Model. Earth Syst. 9, 1251–1268 (2017).

    Google Scholar 

  30. 30.

    Bui, H. X. & Maloney, E. D. Changes in Madden-Julian oscillation precipitation and wind variance under global warming. Geophys. Res. Lett. 45, 7148–7155 (2018).

    Google Scholar 

  31. 31.

    Bui, H. X. & Maloney, E. D. Mechanisms for global warming impacts on Madden–Julian oscillation precipitation amplitude. J. Clim. 32, 6961–6975 (2019).

    Google Scholar 

  32. 32.

    Maloney, E. D., Adames, Á. F. & Bui, H. X. Madden–Julian oscillation changes under anthropogenic warming. Nat. Clim. Change 9, 26–33 (2019).

    Google Scholar 

  33. 33.

    Wolding, B. O., Maloney, E. D., Henderson, S. & Branson, M. Climate change and the Madden-Julian oscillation: a vertically resolved weak temperature gradient analysis. J. Adv. Model. Earth Syst. 9, 307–331 (2017).

    Google Scholar 

  34. 34.

    Henderson, S. A., Maloney, E. D. & Son, S.-W. Madden–Julian oscillation pacific teleconnections: the impact of the basic state and MJO representation in general circulation models. J. Clim. 30, 4567–4587 (2017).

    Google Scholar 

  35. 35.

    Wallace, J. M. & Gutzler, D. S. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weath. Rev. 109, 784–812 (1981).

    Google Scholar 

  36. 36.

    Bao, M. & Hartmann, D. L. The response to MJO-like forcing in a nonlinear shallow-water model. Geophys. Res. Lett. 41, 1322–1328 (2014).

    Google Scholar 

  37. 37.

    Adames, Á. F. & Wallace, J. M. Three-dimensional structure and evolution of the MJO and its relation to the mean flow. J. Atmos. Sci. 71, 2007–2026 (2014).

    Google Scholar 

  38. 38.

    Simmons, A. J., Wallace, J. M. & Branstator, G. W. Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci. 40, 1363–1392 (1983).

    Google Scholar 

  39. 39.

    Ting, M. & Yu, L. Steady response to tropical heating in wavy linear and nonlinear baroclinic models. J. Atmos. Sci. 55, 3565–3582 (1998).

    Google Scholar 

  40. 40.

    Hoskins, B. J. & Ambrizzi, T. Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci. 50, 1661–1671 (1993).

    Google Scholar 

  41. 41.

    Ting, M. & Sardeshmukh, P. D. Factors determining the extratropical response to equatorial diabatic heating anomalies. J. Atmos. Sci. 50, 907–918 (1993).

    Google Scholar 

  42. 42.

    Yasui, S. & Watanabe, M. Forcing processes of the summertime circumglobal teleconnection pattern in a dry AGCM. J. Clim. 23, 2093–2114 (2009).

    Google Scholar 

  43. 43.

    Subramanian, A. et al. The MJO and global warming: a study in CCSM4. Clim. Dyn. 42, 2019–2031 (2014).

    Google Scholar 

  44. 44.

    Chang, C.-W. J., Tseng, W.-L., Hsu, H.-H., Keenlyside, N. & Tsuang, B.-J. The Madden-Julian oscillation in a warmer world. Geophys. Res. Lett. 42, 6034–6042 (2015).

    Google Scholar 

  45. 45.

    Neelin, J. D., Langenbrunner, B., Meyerson, J. E., Hall, A. & Berg, N. California winter precipitation change under global warming in the coupled model intercomparison project phase 5 ensemble. J. Clim. 26, 6238–6256 (2013).

    Google Scholar 

  46. 46.

    Maloney, E. D. & Xie, S.-P. Sensitivity of tropical intraseasonal variability to the pattern of climate warming. J. Adv. Model. Earth Syst. 5, 32–47 (2013).

    Google Scholar 

  47. 47.

    Simpson, I. R., Seager, R., Ting, M. & Shaw, T. A. Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate. Nat. Clim. Change 6, 65–70 (2016).

    Google Scholar 

  48. 48.

    Kang, W. & Tziperman, E. More frequent sudden stratospheric warming events due to enhanced MJO forcing expected in a warmer climate. J. Clim. 30, 8727–8743 (2017).

    Google Scholar 

  49. 49.

    Swain, D. L., Langenbrunner, B., Neelin, J. D. & Hall, A. Increasing precipitation volatility in twenty-first-century California. Nat. Clim. Change 8, 427–433 (2018).

    Google Scholar 

  50. 50.

    Zhou, Z.-Q., Xie, S.-P., Zheng, X.-T., Liu, Q. & Wang, H. Global warming–induced changes in El Niño teleconnections over the North Pacific and North America. J. Clim. 27, 9050–9064 (2014).

    Google Scholar 

  51. 51.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2011).

    Google Scholar 

  52. 52.

    Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Google Scholar 

  53. 53.

    Kanamitsu, M. et al. NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 83, 1631–1644 (2002).

    Google Scholar 

  54. 54.

    ERA5: Fifth Generation Of ECMWF Atmospheric Reanalyses Of The Global Climate (Copernicus Climate Change Service, acessed April 2019);

  55. 55.

    Watanabe, M. & Kimoto, M. Atmosphere-ocean thermal coupling in the North Atlantic: a positive feedback. Q. J. R. Meteorol. Soc. 126, 3343–3369 (2000).

    Google Scholar 

  56. 56.

    Watanabe, M. & Jin, F.-F. A moist linear baroclinic model: coupled dynamical–convective response to El Niño. J. Clim. 16, 1121–1139 (2003).

    Google Scholar 

  57. 57.

    Lee, H.-J. & Seo, K.-H. Impact of the Madden-Julian oscillation on Antarctic sea ice and its dynamical mechanism. Sci. Rep. 9, 10761 (2019).

    Google Scholar 

  58. 58.

    Shao, X., Li, S., Liu, N. & Song, J. The Madden–Julian oscillation during the 2016 summer and its possible impact on rainfall in China. Int. J. Climatol. 38, 2575–2589 (2018).

    Google Scholar 

  59. 59.

    CLIVAR Madden–Julian Working Group MJO simulation diagnostics. J. Clim. 22, 3006–3030 (2009).

    Google Scholar 

  60. 60.

    Zhou, W. Code for MJO-related analyses and preparing input for LBM simulations. Zenodo (2020).

  61. 61.

    Wheeler, M. C. & Hendon, H. H. An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon. Weath. Rev. 132, 1917–1932 (2004).

    Google Scholar 

Download references


We thank M. Watanabe and M. Hayashi for providing the LBM. This work was supported by the Laboratory Directed Research and Development (LDRD) funding from Berkeley Lab, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract DE-AC02-05CH11231 (to D.Y. and W.Z.); the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division, Regional & Global Climate Modeling Program under Award DE-AC02-05CH11231 (to D.Y.); the National Institute of Food and Agriculture under the project CA-D-LAW-2462-RR (to D.Y.); the Packard Fellowship for Science and Engineering (to D. Y.); the National Science Foundation (AGS 1637450 to S.P.X.) and the National Natural Science Foundation of China (grant no. 41805051 to J.M.).

Author information




W.Z. designed the research, ran the simulations and conducted the analysis. All of the authors contributed to improving the analysis and interpretation. J.M. helped with the setup of the LBM. W.Z. wrote the first draft and all of the authors edited the paper.

Corresponding author

Correspondence to Wenyu Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Climate Change thanks Hien Bui, Frederic Vitart and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Figs. 1–19.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Yang, D., Xie, SP. et al. Amplified Madden–Julian oscillation impacts in the Pacific–North America region. Nat. Clim. Chang. 10, 654–660 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing