Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming

Abstract

Slower warming in the deep ocean encourages a perception that its biodiversity is less exposed to climate change than that of surface waters. We challenge this notion by analysing climate velocity, which provides expectations for species’ range shifts. We find that contemporary (1955–2005) climate velocities are faster in the deep ocean than at the surface. Moreover, projected climate velocities in the future (2050–2100) are faster for all depth layers, except at the surface, under the most aggressive GHG mitigation pathway considered (representative concentration pathway, RCP 2.6). This suggests that while mitigation could limit climate change threats for surface biodiversity, deep-ocean biodiversity faces an unavoidable escalation in climate velocities, most prominently in the mesopelagic (200–1,000 m). To optimize opportunities for climate adaptation among deep-ocean communities, future open-ocean protected areas must be designed to retain species moving at different speeds at different depths under climate change while managing non-climate threats, such as fishing and mining.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Climate velocity (km per decade) in the global ocean.
Fig. 2: The relationship between contemporary climate velocity and marine biodiversity.
Fig. 3: Future distribution of thermal habitat presently within large (>100,000 km2) MPAs.

Data availability

Ocean temperature rasters for each depth layer (historical and RCPs scenarios) are available at Zenodo under the identifier https://doi.org/10.5281/zenodo.3596584. Correspondence and requests for materials should be addressed to I.B.M.

Code availability

Scripts are available at Zenodo under the identifier https://doi.org/10.5281/zenodo.3596584.

References

  1. 1.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim Change 3, 919–925 (2013).

    Article  Google Scholar 

  2. 2.

    Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).

  3. 3.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

  4. 4.

    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    Costello, M. J. & Chaudhary, C. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr. Biol. 27, R511–R527 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).

  7. 7.

    Harris, P. T., Macmillan-Lawler, M., Rupp, J. & Baker, E. K. Geomorphology of the oceans. Mar. Geol. 352, 4–24 (2014).

    Article  Google Scholar 

  8. 8.

    Webb, T. J., Berghe, E. V. & O’Dor, R. Biodiversity’s big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean. PLoS ONE 5, e10223 (2010).

    Article  CAS  Google Scholar 

  9. 9.

    Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128–129 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    Desbruyères, D., McDonagh, E. L., King, B. A. & Thierry, V. Global and full-depth ocean temperature trends during the early twenty-first century from Argo and repeat hydrography. J. Climate 30, 1985–1997 (2016).

    Article  Google Scholar 

  11. 11.

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).

    Article  Google Scholar 

  15. 15.

    Chivers, W. J., Walne, A. W. & Hays, G. C. Mismatch between marine plankton range movements and the velocity of climate change. Nat. Commun. 8, 14434 (2017).

  16. 16.

    Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).

    Article  Google Scholar 

  17. 17.

    Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).

    Article  Google Scholar 

  18. 18.

    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    Sayre, R. et al. A three-dimensional mapping of the ocean based on environmental data. Oceanography 30, 90–103 (2017).

    Article  Google Scholar 

  20. 20.

    Kaschner, K. et al. AquaMaps: Predicted Range Maps for Aquatic Species v.10/2019 (Global Biodiversity Information Facility, accessed 2019); https://www.aquamaps.org/

  21. 21.

    Levin, L. A. & Bris, N. L. The deep ocean under climate change. Science 350, 766–768 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).

    Article  CAS  Google Scholar 

  23. 23.

    Balmaseda, M. A., Trenberth, K. E. & Källén, E. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 40, 1754–1759 (2013).

    Article  Google Scholar 

  24. 24.

    Wright, G. et al. Marine spatial planning in areas beyond national jurisdiction. Mar. Policy (in the press).

  25. 25.

    Ashford, O. S. et al. Phylogenetic and functional evidence suggests that deep-ocean ecosystems are highly sensitive to environmental change and direct human disturbance. Proc. R. Soc. B 285, 20180923 (2018).

    Article  Google Scholar 

  26. 26.

    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    CAS  Article  Google Scholar 

  27. 27.

    Hidalgo, M. & Browman, H. I. Developing the knowledge base needed to sustainably manage mesopelagic resources. ICES J. Mar. Sci. 76, 609–615 (2019).

    Article  Google Scholar 

  28. 28.

    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    Phrampus, B. J., Hornbach, M. J., Ruppel, C. D. & Hart, P. E. Widespread gas hydrate instability on the upper U.S. Beaufort margin. J. Geophys. Res. Solid Earth 119, 8594–8609 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Game, E. T. et al. Pelagic protected areas: the missing dimension in ocean conservation. Trends Ecol. Evol. 24, 360–369 (2009).

    Article  Google Scholar 

  31. 31.

    García Molinos, J., Burrows, M. T. & Poloczanska, E. S. Ocean currents modify the coupling between climate change and biogeographical shifts. Sci. Rep. 7, 1–9 (2017).

    Article  CAS  Google Scholar 

  32. 32.

    Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33, 441–457 (2018).

    Article  Google Scholar 

  33. 33.

    Venegas‐Li, R., Levin, N., Possingham, H. & Kark, S. 3D spatial conservation prioritisation: accounting for depth in marine environments. Methods Ecol. Evol. 9, 773–784 (2018).

    Article  Google Scholar 

  34. 34.

    Morgan, L., Pike, E. & Moffitt, R. How much of the ocean is protected? Biodiversity 19, 148–151 (2018).

    Google Scholar 

  35. 35.

    Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).

    CAS  Article  Google Scholar 

  37. 37.

    Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).

    CAS  Google Scholar 

  38. 38.

    Maxwell, S. M., Gjerde, K. M., Conners, M. G. & Crowder, L. B. Mobile protected areas for biodiversity on the high seas. Science 367, 252–254 (2020).

    CAS  Article  Google Scholar 

  39. 39.

    Fredston‐Hermann, A., Gaines, S. D. & Halpern, B. S. Biogeographic constraints to marine conservation in a changing climate. Ann. NY Acad. Sci. 1429, 5–17 (2018).

    Article  Google Scholar 

  40. 40.

    Dobrowski, S. Z. et al. The climate velocity of the contiguous United States during the 20th century. Glob. Change Biol. 19, 241–251 (2013).

    Article  Google Scholar 

  41. 41.

    Dobrowski, S. Z. & Parks, S. A. Climate change velocity underestimates climate change exposure in mountainous regions. Nat. Commun. 7, 12349 (2016).

  42. 42.

    Vrac, M., Stein, M. L., Hayhoe, K. & Liang, X.-Z. A general method for validating statistical downscaling methods under future climate change. Geophys. Res. Lett. 34, L18701 (2007).

  43. 43.

    Rogers, A. D. Environmental change in the deep ocean. Annu. Rev. Environ. Resour. 40, 1–38 (2015).

    Article  Google Scholar 

  44. 44.

    Schulzweida, U. CDO User Guide v.1.9.8 (Zenodo, 2019).

  45. 45.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  46. 46.

    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    CAS  Article  Google Scholar 

  47. 47.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    Article  Google Scholar 

  48. 48.

    Richardson, A. J. In hot water: zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295 (2008).

    Article  Google Scholar 

  49. 49.

    Sen Gupta, A. et al. Episodic and non-uniform shifts of thermal habitats in a warming ocean. Deep Sea Res. Part II 113, 59–72 (2015).

    Article  Google Scholar 

  50. 50.

    García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an R package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).

    Article  Google Scholar 

  51. 51.

    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).

    Article  Google Scholar 

  52. 52.

    Brown, A. & Thatje, S. The effects of changing climate on faunal depth distributions determine winners and losers. Glob. Change Biol. 21, 173–180 (2015).

    Article  Google Scholar 

  53. 53.

    Klein, C. J. et al. Shortfalls in the global protected area network at representing marine biodiversity. Sci. Rep. 5, 17539 (2015).

  54. 54.

    Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Change 9, 102–110 (2019).

    Article  Google Scholar 

  55. 55.

    Schliep, E. M., Gelfand, A. E. & Clark, J. S. Stochastic modeling for velocity of climate change. J. Agric. Biol. Environ. Stat. 20, 323–342 (2015).

    Article  Google Scholar 

  56. 56.

    Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C. & Nielsen, S. E. Velocity of climate change algorithms for guiding conservation and management. Glob. Change Biol. 21, 997–1004 (2015).

    Article  Google Scholar 

  57. 57.

    Carroll, C., Lawler, J. J., Roberts, D. R. & Hamann, A. Biotic and climatic velocity identify contrasting areas of vulnerability to climate change. PLoS ONE 10, e0140486 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I.B.M. is supported by the Advanced Human Capital Program of the Chilean National Research and Development Agency (grant no. 72170231). A.J.R. is supported by Australian Government grant no. ARC DP190102293. J.G.M. is funded by the Tenure-Track System Promotion Program of the Japanese Ministry of Education, Culture, Sports, Science and Technology. N.A.D. is supported by the Fundación Bancaria ‘la Caixa’ Postgraduate Fellowship (LCF/BQ/AA16/11580053). C.J.K. is supported by The University of Queensland Postdoctoral Fellowship.

Author information

Affiliations

Authors

Contributions

I.B.M., D.S.S. and A.J.R. conceived the research. K.K., C.G. and K.K.R. provided the marine biodiversity data. I.B.M and D.S.S. analysed the data. I.B.M, D.S.S. and A.J.R. wrote the first draft. I.B.M., D.S.S., A.J.R., J.G.M., M.T.B., N.A.D. and C.J.K. contributed equally to discussion of ideas and analyses. All authors commented on the manuscript.

Corresponding author

Correspondence to Isaac Brito-Morales.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Conor Waldock and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Temporal trend component of climate velocity.

a, Temporal trend (°C decade−1) for contemporary (1955–2005) and projected sea temperatures (2050–2100) at four different depths in the ocean under three IPCC scenarios (RCP2.6, RCP4.5 and RCP8.5). b, Median climate velocity values by 1° of latitude. White bands in deeper layers represent areas where there is no water because of seafloor features extending into pelagic zones.

Extended Data Fig. 2 Spatial gradient component of climate velocity.

a, Spatial gradient (°C km−1) for contemporary (1955–2005) and projected sea temperatures (2050–2100) at four different depths in the ocean under three IPCC scenarios (RCP2.6, RCP4.5 and RCP8.5). b, Median climate velocity values by 1° of latitude. White bands in deeper layers represents areas where there is no water because of seafloor features extending into pelagic zones.

Extended Data Fig. 3 Direction of climate velocity.

Direction of climate velocity for contemporary (1955–2005) and projected future sea temperatures (2050–2100) at four different depths in the ocean under three IPCC scenarios (RCP2.6, RCP4.5 and RCP8.5). Directions standardized by hemisphere to poleward/equatorward directions.

Extended Data Fig. 4 Global changes in temperature by 2100 relative to 2019.

Global changes in temperature conditions at four different layers in the ocean by 2100 relative to present day conditions (2019) under three IPCC scenarios (RCP2.6, RCP4.5 and RCP8.5). White grid squares in deeper layers represent areas where seafloor features extending upward toward the surface mean that there are no sea temperature data available at this depth.

Extended Data Fig. 5 Species richness for three ocean layers in the ocean.

Species richness with a probability of occurrence > 0.5 for three different layers in the ocean. Polygons represent MPAs with areas > 100,000 km2 (n = 23). Grey cells represent missing species richness data for that depth layer, given the threshold for probability of occurrence.

Extended Data Fig. 6 Standard errors associated to the linear temporal trend component of climate velocity.

Standard errors (°C decade−1) associated to the linear temporal trend component of climate velocity for contemporary (1955–2005) and projected future sea temperatures (2050–2100) at four different depths in the ocean under three IPCC scenarios (RCP2.6, RCP4.5 and RCP8.5). White grid squares in deeper layers represent areas where seafloor features extending upward toward the surface mean that there are no sea temperature data available at this depth.

Extended Data Fig. 7 Interquartile range of climate velocity among models.

Interquartile range (75th–25th) of climate velocity among models (n = 11) for contemporary (1955–2005) and projected future sea temperatures (2050–2100) at five different depths in the ocean and under three IPCC scenarios (RCP2.6, RCP4.5 and RCP8.5). White grid squares in deeper layers represent areas where seafloor features extending upward toward the surface mean that there are no sea temperature data available at this depth.

Supplementary information

Supplementary Information

Supplementary Tables 1–4.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brito-Morales, I., Schoeman, D.S., Molinos, J.G. et al. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat. Clim. Chang. 10, 576–581 (2020). https://doi.org/10.1038/s41558-020-0773-5

Download citation