Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Disconnects between ecological theory and data in phenological mismatch research

Subjects

Abstract

Climate change may lead to phenological mismatches, where the timing of critical events between interacting species becomes desynchronized, with potential negative consequences. Evidence documenting negative impacts on fitness is mixed. The Cushing match-mismatch hypothesis, the most common hypothesis underlying these studies, offers testable assumptions and predictions to determine consequences of phenological mismatch when combined with a pre-climate change baseline. Here, we highlight how improved approaches could rapidly advance mechanistic understanding. We find that, to the best of our knowledge, no study has yet collected the data required to test this hypothesis well, and 71% of studies fail to define a baseline. Experiments that clearly link timing to fitness and test extremes, integration across approaches and null models would aid robust predictions of shifts with climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptualization of the Cushing match–mismatch hypothesis.
Fig. 2: A simplified flow diagram for forecasting climate change effects on consumer fitness, as predicted by the Cushing hypothesis.
Fig. 3: Key assumptions and resulting implications for climate change predictions, when pre-climate change baselines are not defined.

Similar content being viewed by others

Data availability

The data supporting the results are archived in Dryad accessible at https://doi.org/10.5061/dryad.7pvmcvdpz.

References

  1. Ovaskainen, O. et al. Community-level phenological response to climate change. Proc. Natl Acad. Sci. USA 110, 13434–13439 (2013).

    CAS  Google Scholar 

  2. CaraDonna, P. J., Iler, A. M. & Inouye, D. W. Shifts in flowering phenology reshape a subalpine plant community. Proc. Natl Acad. Sci. USA 111, 4916–4921 (2014).

    CAS  Google Scholar 

  3. Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241 (2016).

    CAS  Google Scholar 

  4. Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018). Shows that the relative timing of interacting species across many types of interactions and taxonomic groups has changed substantially in recent decades.

    CAS  Google Scholar 

  5. Post, E. & Forchhammer, M. C. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos. T. Roy. Soc. B 363, 2367–2373 (2007). Demonstrates the ecological consequences of trophic mismatch for a migratory herbivore and its host plant community due to climate change.

    Google Scholar 

  6. Plard, F. et al. Mismatch between birth date and vegetation phenology slows the demography of roe deer. PLoS Biol. 12, e1001828 (2014).

    Google Scholar 

  7. Doiron, M., Gauthier, G. & Lévesque, E. Trophic mismatch and its effects on the growth of young in an Arctic herbivore. Global Change Biol. 21, 4364–4376 (2015).

    Google Scholar 

  8. Burkle, L. A., Marlin, J. C. & Knight, T. M. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339, 1611–1615 (2013).

    CAS  Google Scholar 

  9. Vatka, E., Orell, M. & RytkÖnen, S. Warming climate advances breeding and improves synchrony of food demand and food availability in a boreal passerine. Global Change Biol. 17, 3002–3009 (2011).

    Google Scholar 

  10. Burthe, S. et al. Phenological trends and trophic mismatch across multiple levels of a North Sea pelagic food web. Marine Ecol. Prog. Ser. 454, 119–133 (2012).

    Google Scholar 

  11. Reed, T. E., Jenouvrier, S. & Visser, M. E. Phenological mismatch strongly affects individual fitness but not population demography in a woodland passerine. J. Anim. Ecol. 82, 131–144 (2013).

    Google Scholar 

  12. Gienapp, P., Reed, T. E. & Visser, M. E. Why climate change will invariably alter selection pressures on phenology. P. Roy. Soc. B-Biol. Sci. 281, 20141611 (2014).

    Google Scholar 

  13. Johansson, J., Kristensen, N. P., Nilsson, J.-Å. & Jonzén, N. The eco-evolutionary consequences of interspecific phenological asynchrony—a theoretical perspective. Oikos 124, 102–112 (2015). Reviews theoretical work related to Cushing’s hypothesis and proposes that phenological mismatch is not necessarily an expected outcome based on evolutionary theory.

    Google Scholar 

  14. Bewick, S., Cantrell, R. S., Cosner, C. & Fagan, W. F. How resource phenology affects consumer population dynamics. Am. Nat. 187, 151–166 (2016).

    Google Scholar 

  15. Samplonius, J. M., Kappers, E. F., Brands, S. & Both, C. Phenological mismatch and ontogenetic diet shifts interactively affect offspring condition in a passerine. J. Anim. Ecol. 85, 1255–1264 (2016). Provides a strong test of the Cushing hypothesis by testing many confounding factors and key assumptions, thus showing that this hypothesis is relevant to a bird-caterpillar interaction.

    Google Scholar 

  16. Hjort, J. Fluctuations in the great fisheries of northern Europe viewed in the light of biological research (ICES, 1914).

  17. Cushing, D. H. The regularity of the spawning season of some fishes. ICES J. Mar. Sci. 33, 81–92 (1969). Proposes the match-mismatch hypothesis to explain inter-annual variation in population recruitment of temperate fish species based on observations of their spawning periods.

    Google Scholar 

  18. Cushing, D. H. The natural regulation of fish populations. HardenJones, F. R. (ed.) Sea Fisheries Research. Elek Science, 399–412 (1974).

  19. Cushing, D. H. Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Adv. Mar. Biol. 26, 249–293 (1990).

    Google Scholar 

  20. Miller-Rushing, A. J., Høye, T. T., Inouye, D. W. & Post, E. The effects of phenological mismatches on demography. Philos. T. Roy. Soc. B 365, 3177–3186 (2010).

    Google Scholar 

  21. Renner, S. S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. S. 49, 165–182 (2018).

    Google Scholar 

  22. Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–88 (2019).

    Google Scholar 

  23. Arula, T., Gröger, J., Ojaveer, H. & Simm, M. Shifts in the spring herring (Clupea harengus membras) larvae and related environment in the Eastern Baltic Sea over the past 50 years. PLoS ONE 9, e91304 (2014). Tested for the presence of a shifting regime and its implications on the relative timing on a fish invertebrate interaction.

    Google Scholar 

  24. Winder, M. & Schindler, D. E. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85, 2100–2106 (2004).

    Google Scholar 

  25. Durant, J. M., Hjermann, D. Ø., Ottersen, G. & Stenseth, N. C. Climate and the match or mismatch between predator requirements and resource availability. Climate Res. 33, 271–283 (2007).

    Google Scholar 

  26. Cury, P., Shannon, L. & Shin, Y. J. in Responsible fisheries in the marine ecosystem (eds Sinclair, M. & Valdimarsson, G.) 103–123 (FAO and CABI Publishing, 2003).

  27. Durant, J. M. et al. Timing and abundance as key mechanisms affecting trophic interactions in variable environments. Ecol. Lett. 8, 952–958 (2005).

    Google Scholar 

  28. Johansson, J. & Jonzén, N. Game theory sheds new light on ecological responses to current climate change when phenology is historically mismatched. Ecol. Lett. 15, 881–888 (2012).

    Google Scholar 

  29. Kerby, J., Wilmers, C. & Post, E. in Trait-mediated indirect interactions: ecological and evolutionary perspectives (eds Ohgushi, T. et al.) 508–525 (Cambridge Univ. Press, 2012).

  30. Kudo, G. & Ida, T. Y. Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology 94, 2311–2320 (2013).

    Google Scholar 

  31. Leggett, W. & Deblois, E. Recruitment in marine fishes: is it regulated by starvation and predation in the egg and larval stages? Neth. J. Sea Res. 32, 119–134 (1994).

    Google Scholar 

  32. Philippart, C. J. et al. Climate-related changes in recruitment of the bivalve Macoma balthica. Limnol. Oceanogr. 48, 2171–2185 (2003).

    Google Scholar 

  33. Atkinson, A. et al. Questioning the role of phenology shifts and trophic mismatching in a planktonic food web. Prog. Oceanogr. 137, 498–512 (2015).

    Google Scholar 

  34. Kerby, J. & Post, E. Capital and income breeding traits differentiate trophic match—mismatch dynamics in large herbivores. Philos. T. Roy. Soc. B 368, 20120484 (2013).

    Google Scholar 

  35. Durant, J. M. et al. Extension of the match-mismatch hypothesis to predator-controlled systems. Mar. Ecol. Progr. Ser. 474, 43–52 (2013).

    Google Scholar 

  36. Shurin, J. B., Gruner, D. S. & Hillebrand, H. All wet or dried up? Real differences between aquatic and terrestrial food webs. P. Roy. Soc. B-Biol. Sci. 273, 1–9 (2005).

    Google Scholar 

  37. Carpenter, S. R. & Kitchell, J. F. The trophic cascade in lakes (Cambridge Univ. Press, 1996).

  38. Shurin, J. B. & Seabloom, E. W. The strength of trophic cascades across ecosystems: predictions from allometry and energetics. J. Anim. Ecol. 74, 1029–1038 (2005).

    Google Scholar 

  39. Borer, E. T., Halpern, B. S. & Seabloom, E. W. Asymmetry in community regulation: effects of predators and productivity. Ecology 87, 2813–2820 (2006).

    Google Scholar 

  40. Hampton, S. E., Scheuerell, M. D. & Schindler, D. E. Coalescence in the Lake Washington story: interaction strengths in a planktonic food web. Limnol. Oceanogr. 51, 2042–2051 (2006).

    Google Scholar 

  41. Boggs, C. L. & Inouye, D. W. A single climate driver has direct and indirect effects on insect population dynamics. Ecol. Lett. 15, 502–508 (2012).

    Google Scholar 

  42. Thackeray, S. J. Mismatch revisited: what is trophic mismatching from the perspective of the plankton? J. Plankton Res. 34, 1001–1010 (2012).

    Google Scholar 

  43. Nakazawa, T. & Doi, H. A perspective on match/mismatch of phenology in community contexts. Oikos 121, 489–495 (2012).

    Google Scholar 

  44. Revilla, T. A., Encinas-Viso, F. & Loreau, M. (A bit) Earlier or later is always better: phenological shifts in consumer—resource interactions. Theor. Ecol. 7, 149–162 (2014).

    Google Scholar 

  45. Borer, E. et al. What determines the strength of a trophic cascade? Ecology 86, 528–537 (2005).

    Google Scholar 

  46. Gruner, D. S. et al. A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecol. Lett. 11, 740–755 (2008).

    Google Scholar 

  47. Betini, G. S., Avgar, T. & Fryxell, J. M. Why are we not evaluating multiple competing hypotheses in ecology and evolution? Roy. Soc. Open Sci. 4, 160756 (2017).

    Google Scholar 

  48. Singer, M. C. & Parmesan, C. Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy? Philos. T. Roy. Soc. B 365, 3161–3176 (2010). Proposes that before climate change the fitness of some consumers may not have been at its maximum (i.e. asynchrony baseline) and that phenological mismatch due to climate change should not necessarily be the null hypothesis.

    Google Scholar 

  49. Working Group I IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  50. Adrian, R., Wilhelm, S. & Gerten, D. Life-history traits of lake plankton species may govern their phenological response to climate warming. Glob. Change Biol. 12, 652–661 (2006).

    Google Scholar 

  51. Wolkovich, E., Cook, B., McLauchlan, K. & Davies, T. Temporal ecology in the Anthropocene. Ecol. Lett. 17, 1365–1379 (2014).

    CAS  Google Scholar 

  52. Edmondson, W. Sixty years of Lake Washington: a curriculum vitae. Lake Reserv. Manage. 10, 75–84 (1994).

    Google Scholar 

  53. Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

    CAS  Google Scholar 

  54. Ricciardi, A., Neves, R. J. & Rasmussen, J. B. Impending extinctions of North American freshwater mussels (Unionoida) following the zebra mussel (Dreissena polymorpha) invasion. J. Anim. Ecol. 67, 613–619 (1998).

    Google Scholar 

  55. Fritts, T. H. & Rodda, G. H. The role of introduced species in the degradation of island ecosystems: a case history of Guam. Ann. Rev. Ecol. Syst. 29, 113–140 (1998).

    Google Scholar 

  56. Verschuren, D. et al. History and timing of human impact on Lake Victoria, East Africa. P. Roy. Soc. Lond. B Bio. 269, 289–294 (2002).

    Google Scholar 

  57. Visser, M. E., te Marvelde, L. & Lof, M. E. Adaptive phenological mismatches of birds and their food in a warming world. J. Ornith. 153, 75–84 (2012). Proposes that in some systems, life-history trade-offs will promote asynchrony for many or most individuals in a population and that maximum fitness does not occur at the resource peak (i.e. adaptive mismatch hypothesis).

    Google Scholar 

  58. Wiklund, C. & Torbjörn, F. Why do males emerge before females? Oecologia 31, 153–158 (1977).

    Google Scholar 

  59. Iwasa, Y. et al. Emergence patterns in male butterflies: A hypothesis and a test. Theor. Popul. Biol. 23, 363–379 (1983).

    Google Scholar 

  60. Johansson, J., Smith, H. G. & Jonzén, N. Adaptation of reproductive phenology to climate change with ecological feedback via dominance hierarchies. J. Anim. Ecol. 83, 440–449 (2014).

    Google Scholar 

  61. Thompson, J. N. The coevolutionary process (Univ. Chicago Press, 1994).

  62. Chmura, H. E. et al. The mechanisms of phenology: the patterns and processes of phenological shifts. Ecol. Monogr. 89, e01337 (2018).

    Google Scholar 

  63. Bauerfeind, S. S. & Fischer, K. Increased temperature reduces herbivore host-plant quality. Glob. Change Biol. 19, 3272–3282 (2013).

    Google Scholar 

  64. Rudolf, V. H. & Singh, M. Disentangling climate change effects on species interactions: effects of temperature, phenological shifts, and body size. Oecologia 173, 1043–1052 (2013).

    Google Scholar 

  65. Berger, S. A., Diehl, S., Stibor, H., Sebastian, P. & Scherz, A. Separating effects of climatic drivers and biotic feedbacks on seasonal plankton dynamics: no sign of trophic mismatch. Freshwater Biol. 59, 2204–2220 (2014).

    Google Scholar 

  66. George, D. The effect of nutrient enrichment and changes in the weather on the abundance of Daphnia in Esthwaite Water, Cumbria. Freshwater Biol. 57, 360–372 (2012).

    CAS  Google Scholar 

  67. Law, T., Zhang, W., Zhao, J. & Arhonditsis, G. B. Structural changes in lake functioning induced from nutrient loading and climate variability. Ecol. Model. 220, 979–997 (2009).

    CAS  Google Scholar 

  68. Francis, T. B. et al. Shifting regimes and changing interactions in the Lake Washington, USA, plankton community from 1962–1994. PLoS ONE 9, e110363 (2014).

    Google Scholar 

  69. Vatka, E., Rytkönen, S. & Orell, M. Does the temporal mismatch hypothesis match in boreal populations? Oecologia 176, 595–605 (2014).

    Google Scholar 

  70. Holliday, N. Population ecology of winter moth (Operophtera brumata) on apple in relation to larval dispersal and time of bud burst. J. Appl. Ecol. 14, 803–813 (1977).

    Google Scholar 

  71. Tikkanen, O.-P., Niemelä, P. & Keränen, J. Growth and development of a generalist insect herbivore, Operophtera brumata, on original and alternative host plants. Oecologia 122, 529–536 (2000).

    Google Scholar 

  72. Wiltshire, K. H. et al. Resilience of North Sea phytoplankton spring bloom dynamics: an analysis of long-term data at Helgoland Roads. Limnol. Oceanogr. 53, 1294–1302 (2008).

    Google Scholar 

  73. Henrich-Gebhardt, S. G. in Population Biology of Passerine Birds 175–185 (Springer-Verlag, 1990).

  74. Kelleri, L. F. & Van Noordwijk, A. J. Effects of local environmental conditions. Ardea 82, 349–362 (1994).

    Google Scholar 

  75. Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172 (2006).

    Google Scholar 

  76. Yang, L. H. & Rudolf, V. H. W. Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol. Lett. 13, 1–10 (2010).

    CAS  Google Scholar 

  77. Borcherding, J., Beeck, P., DeAngelis, D. L. & Scharf, W. R. Match or mismatch: the influence of phenology on size-dependent life history and divergence in population structure. J. Anim. Ecol. 79, 1101–1112 (2010).

    Google Scholar 

  78. Gullett, P., Hatchwell, B. J., Robinson, R. A. & Evans, K. L. Phenological indices of avian reproduction: cryptic shifts and prediction across large spatial and temporal scales. Ecol. Evol. 3, 1864–1877 (2013).

    Google Scholar 

  79. Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    CAS  Google Scholar 

  80. Sgardeli, V., Zografou, K. & Halley, J. M. Climate change versus ecological drift: assessing 13 years of turnover in a butterfly community. Basic Appl. Ecol. 17, 283–290 (2016).

    Google Scholar 

  81. Pakanen, V.-M., Orell, M., Vatka, E., Rytkönen, S. & Broggi, J. Different ultimate factors define timing of breeding in two related species. PLoS ONE 11, e0162643 (2016).

    Google Scholar 

  82. Lof, M. E., Reed, T. E., McNamara, J. M. & Visser, M. E. Timing in a fluctuating environment: environmental variability and asymmetric fitness curves can lead to adaptively mismatched avian reproduction. P. Roy. Soc. B-Biol. Sci. 279, 3161–3169 (2012).

    Google Scholar 

  83. Rasmussen, N. L., Van Allen, B. G. & Rudolf, V. H. W. Linking phenological shifts to species interactions through size-mediated priority effects. J. Anim. Ecol. 83, 1206–1215 (2014).

    Google Scholar 

  84. Chuine, I. & Régnière, J. Process-based models of phenology for plants and animals. Annu. Rev. Ecol. Evol. S. 48, 159–182 (2017).

    Google Scholar 

  85. van Asch, M. & Visser, M. E. Phenology of forest caterpillars and their host trees: the importance of synchrony. Annu. Rev. Entomol. 52, 37–55 (2007).

    Google Scholar 

  86. Tikkanen, O.-P. & Julkunen-Tiitto, R. Phenological variation as protection against defoliating insects: the case of Quercus robur and Operophtera brumata. Oecologia 136, 244–251 (2003).

    Google Scholar 

  87. Visser, M. E., Van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Philos. Trans. R. Soc. Lond. B 265, 1867–1870 (1998).

    Google Scholar 

  88. Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population.Science 320, 800–803 (2008). Demonstrates that in this population of the great tit (Parus major) birds’ laying dates have remained synchronized with the timing of caterpillar emergence through phenotypic plasticity.

    CAS  Google Scholar 

  89. Deacy, W. W. et al. Phenological synchronization disrupts trophic interactions between Kodiak brown bears and salmon. Proc. Natl Acad. Sci. USA 114, 10432–10437 (2017).

    CAS  Google Scholar 

  90. Senner, N. R., Stager, M. & Sandercock, B. K. Ecological mismatches are moderated by local conditions for two populations of a long-distance migratory bird. Oikos 126, 61–72 (2017).

    Google Scholar 

Download references

Acknowledgements

We thank J. Ehrlen, J. Myers, K. Bolmgren, K. Cottingham, L. McClenachan, M. O’Connor and S. Travers for interesting discussions, and to I. Breckheimer, A. Ettinger and D. Loughnan for constructive feedback on the manuscript. H.M.K. thanks the professor writing retreats offered through the Centre for Academic Leadership at the University of Ottawa for support in writing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

H.M.K. and E.M.W. conceived of the ideas and contributed to the writing and editing of the manuscript. H.M.K. collected and analysed the data.

Corresponding author

Correspondence to Heather M. Kharouba.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Jacob Johansson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods with reference list and Supplementary Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharouba, H.M., Wolkovich, E.M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Chang. 10, 406–415 (2020). https://doi.org/10.1038/s41558-020-0752-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-020-0752-x

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene