Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Keeping infrastructure reliable under climate uncertainty

Characterizing infrastructure vulnerability to climate change is essential given the long asset lives, criticality of services delivered and high costs of upgrading and maintaining these systems. Reconciling uncertainty from past infrastructure design decisions with future uncertainty of climate change will help prioritize limited resources to high risk assets.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Infrastructure decision-making domains defined by past and future climate uncertainty.


  1. Lopez-Cantu, T. & Samaras, C. Environ. Res. Lett. 13, 074006 (2018).

    Article  Google Scholar 

  2. Wright, D. B., Bosma, C. D. & Lopez‐Cantu, T. U. S. Geophys. Res. Lett. 46, 8144–8153 (2019).

    Article  Google Scholar 

  3. Bartos, M. et al. Environ. Res. Lett. 11, 114008 (2016).

    Article  Google Scholar 

  4. Bartos, M. D. & Chester, M. V. Nat. Clim. Change 5, 748–752 (2015).

    Article  Google Scholar 

  5. Van Vliet, M. T. H., Wiberg, D., Leduc, S. & Riahi, K. Nat. Clim. Change 6, 375–380 (2016).

    Article  Google Scholar 

  6. Chester, M. V., Markolf, S. & Allenby, B. J. Ind. Ecol. 23, 1006–1015 (2019).

    Article  Google Scholar 

  7. Kuligowski, R. J. An Overview Of National Weather Service Quantitative Precipitation Estimates (U.S. National Weather Service, National Oceanic and Atmospheric Administration, 1997).

  8. Underwood, B. S., Guido, Z., Gudipudi, P. & Feinberg, Y. Nat. Clim. Change 7, 704–707 (2017).

    Article  Google Scholar 

  9. Cook, L. M., McGinnis, S. & Samaras, C. Clim. Change (2020).

  10. Kim, Y., Chester, M. V., Eisenberg, D. A. & Redman, C. L. Earth’s Futur. 7, 704–717 (2019).

    Google Scholar 

  11. Shortridge, J. & Camp, J. S. Risk Anal. 39, 959–967 (2019).

    Article  Google Scholar 

  12. Walker, W., Haasnoot, M. & Kwakkel, J. Sustainability 5, 955–979 (2013).

    Article  Google Scholar 

  13. Dittrich, R., Wreford, A. & Moran, D. Ecol. Econ. 122, 79–89 (2016).

    Article  Google Scholar 

  14. Grabowski, Z. J. et al. J. Infrastruct. Syst. 23, 02517002 (2017).

    Article  Google Scholar 

  15. Chester, M. V. & Allenby, B. Infrastructure as a wicked complex process. Elem. Sci. Anth. 7, 21 (2019).

    Article  Google Scholar 

Download references


This commentary reflects many years of knowledge building supported, in part, by the National Science Foundation (grant nos. SRN 1444755, HDBE 1635490, S&CC 1831475, CMMI 1635638/1635686 and GCR 1934933).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mikhail V. Chester.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chester, M., Underwood, B.S. & Samaras, C. Keeping infrastructure reliable under climate uncertainty. Nat. Clim. Chang. 10, 488–490 (2020).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing