Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

You are viewing this page in draft mode.

Protecting irrecoverable carbon in Earth’s ecosystems


Avoiding catastrophic climate change requires rapid decarbonization and improved ecosystem stewardship. To achieve the latter, ecosystems should be prioritized by responsiveness to direct, localized action and the magnitude and recoverability of their carbon stores. Here, we show that a range of ecosystems contain ‘irrecoverable carbon’ that is vulnerable to release upon land use conversion and, once lost, is not recoverable on timescales relevant to avoiding dangerous climate impacts. Globally, ecosystems highly affected by human land-use decisions contain at least 260 Gt of irrecoverable carbon, with particularly high densities in peatlands, mangroves, old-growth forests and marshes. To achieve climate goals, we must safeguard these irrecoverable carbon pools through an expanded set of policy and finance strategies.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Illustration of vulnerable and irrecoverable carbon in a hypothetical terrestrial ecosystem.
Fig. 2: Estimated amount of carbon that is recoverable or irrecoverable in major ecosystems within 30 years.
Fig. 3: Estimated annual carbon loss and fraction irrecoverable for major ecosystem types.
Fig. 4: Different types and levels of risk suggest different strategies for protecting irrecoverable carbon in ecosystems.

Data availability

All data generated or analysed during this study are included in this published Perspective and its supplementary information files.


  1. 1.

    IPCC Global Warming of 1.5 °C: An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds Masson-Delmotte, V. et al.) (World Meteorological Organization, 2018).

  2. 2.

    Friedlingstein, P. et al. Global Carbon Budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).

    Google Scholar 

  3. 3.

    Rockstrom, J. et al. A roadmap for rapid decarbonization. Science 355, 1269–1271 (2017).

    Google Scholar 

  4. 4.

    Anderson, C. M. et al. Natural climate solutions are not enough: decarbonizing the economy must remain a critical priority. Science 363, 933–934 (2019).

    CAS  Google Scholar 

  5. 5.

    Griscom, B. et al. We need both natural and energy solutions to stabilize our climate. Glob. Change Biol. 25, 1889–1890 (2019).

    Google Scholar 

  6. 6.

    Turner, W. R. Looking to nature for solutions. Nat. Clim. Change 8, 18–19 (2018).

    Google Scholar 

  7. 7.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS  Google Scholar 

  8. 8.

    Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).

    CAS  Google Scholar 

  9. 9.

    Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).

    Google Scholar 

  10. 10.

    McGlade, C. & Ekins, P. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 517, 187–190 (2015).

    CAS  Google Scholar 

  11. 11.

    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    Google Scholar 

  12. 12.

    Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603 (2015).

    CAS  Google Scholar 

  13. 13.

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    CAS  Google Scholar 

  14. 14.

    Bollman, M. et al. World Ocean Review (Maribus, 2010).

  15. 15.

    Le Quere, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 1–54 (2018).

    Google Scholar 

  16. 16.

    Strong, A., Chisholm, S., Miller, C. & Cullen, J. Ocean fertilization: time to move on. Nature 461, 347–348 (2009).

    CAS  Google Scholar 

  17. 17.

    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

    Google Scholar 

  18. 18.

    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    CAS  Google Scholar 

  19. 19.

    Abbott, B. W. et al. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environ. Res. Lett. 11, 034014 (2016).

    Google Scholar 

  20. 20.

    Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014).

    Google Scholar 

  21. 21.

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    CAS  Google Scholar 

  22. 22.

    Spawn, S. A., Lark, T. J. & Gibbs, H. K. Carbon emissions from cropland expansion in the United States. Environ. Res. Lett. 14, 045009 (2019).

    CAS  Google Scholar 

  23. 23.

    Page, S. E. & Baird, A. J. Peatlands and global change: response and resilience. Annu. Rec. Env. Resour. 41, 35–57 (2016).

    Google Scholar 

  24. 24.

    Howard, J. et al. Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ. 15, 42–50 (2017).

    Google Scholar 

  25. 25.

    Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

    CAS  Google Scholar 

  26. 26.

    Hooijer, A. et al. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7, 1505–1514 (2010).

    CAS  Google Scholar 

  27. 27.

    Anderson-Teixeira, K. J. et al. ForC: a global database of forest carbon stocks and fluxes. Ecology 99, 1507–1507 (2018).

    Google Scholar 

  28. 28.

    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Google Scholar 

  29. 29.

    Xia, J. Z. et al. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sens-Basel 6, 1783–1802 (2014).

    Google Scholar 

  30. 30.

    Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011).

    Google Scholar 

  31. 31.

    Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–233 (2017).

    CAS  Google Scholar 

  32. 32.

    Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 6, 10158 (2015).

    CAS  Google Scholar 

  33. 33.

    Pendleton, L. et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2012).

    CAS  Google Scholar 

  34. 34.

    Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (2018).

    CAS  Google Scholar 

  35. 35.

    Aalda, H. et al. in 2006 IPCC Guidelines for National Greenhouse Gas Inventories Ch. 4 (IPCC, 2006).

  36. 36.

    Kauffman, J. B. et al. The jumbo carbon footprint of a shrimp: carbon losses from mangrove deforestation. Front. Ecol. Environ. 15, 183–188 (2017).

    Google Scholar 

  37. 37.

    Anderson-Teixeira, K. J. et al. Altered dynamics of forest recovery under a changing climate. Glob. Change Biol. 19, 2001–2021 (2013).

    Google Scholar 

  38. 38.

    Amundson, R. & Biardeau, L. Opinion: soil carbon sequestration is an elusive climate mitigation tool. Proc. Natl Acad. Sci. USA 115, 11652–11656 (2019).

    Google Scholar 

  39. 39.

    Cook-Patton, S. et al. The potential for natural forest regeneration to mitigate climate change. Nature (in the press).

  40. 40.

    Poeplau, C. et al. Temporal dynamics of soil organic carbon after land-use change in the temperate zone - carbon response functions as a model approach. Glob. Change Biol. 17, 2415–2427 (2011).

    Google Scholar 

  41. 41.

    Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks - a meta-analysis. Glob. Change Biol. 17, 1658–1670 (2011).

    Google Scholar 

  42. 42.

    Taillardat, P., Friess, D. A. & Lupascu, M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Letters 14, 20180251 (2018).

    Google Scholar 

  43. 43.

    Hiraishi, T. et al. 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands (eds Hiraishi, T. et al.) (IPCC, 2014).

  44. 44.

    Nave, L. E., Vance, E. D., Swanston, C. W. & Curtis, P. S. Harvest impacts on soil carbon storage in temperate forests. Forest Ecol. Manag. 259, 857–866 (2010).

    Google Scholar 

  45. 45.

    Achat, D. L., Fortin, M., Landmann, G., Ringeval, B. & Augusto, L. Forest soil carbon is threatened by intensive biomass harvesting. Sci. Rep. 5, 15991 (2015).

    Google Scholar 

  46. 46.

    Lark, T. J., Salmon, J. M. & Gibbs, H. K. Cropland expansion outpaces agricultural and biofuel policies in the United States. Environ. Res. Lett. 10, 044003 (2015).

    Google Scholar 

  47. 47.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS  Google Scholar 

  48. 48.

    Rausch, L. L. et al. Soy expansion in Brazil’s Cerrado. Conserv. Lett. 12, e12671 (2019).

    Google Scholar 

  49. 49.

    Leifeld, J., Wust-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change 9, 945–947 (2019).

    CAS  Google Scholar 

  50. 50.

    Funk, J. M. et al. Securing the climate benefits of stable forests. Clim. Policy 19, 845–860 (2019).

    Google Scholar 

  51. 51.

    Kroner, R. E. G. et al. The uncertain future of protected lands and waters. Science 364, 881–886 (2019).

    Google Scholar 

  52. 52.

    Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015).

    CAS  Google Scholar 

  53. 53.

    Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z. & Schepaschenko, D. G. Boreal forest health and global change. Science 349, 819–822 (2015).

    CAS  Google Scholar 

  54. 54.

    Millar, C. I. & Stephenson, N. L. Temperate forest health in an era of emerging megadisturbance. Science 349, 823–826 (2015).

    CAS  Google Scholar 

  55. 55.

    Tepley, A. J., Thompson, J. R., Epstein, H. E. & Anderson-Teixeira, K. J. Vulnerability to forest loss through altered postfire recovery dynamics in a warming climate in the Klamath Mountains. Glob. Change Biol. 23, 4117–4132 (2017).

    Google Scholar 

  56. 56.

    Morelli, T. L. et al. Managing climate change refugia for climate adaptation. PLoS ONE 12, e0169725 (2016).

    Google Scholar 

  57. 57.

    Dumroese, R. K., Williams, M. I., Stanturf, J. A. & Clair, J. B. S. Considerations for restoring temperate forests of tomorrow: forest restoration, assisted migration, and bioengineering. New Forest. 46, 947–964 (2015).

    Google Scholar 

  58. 58.

    Sobral, M. et al. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon. Nat. Ecol. Evol. 1, 1670–1676 (2017).

    Google Scholar 

  59. 59.

    Chen, S. P. et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl Acad. Sci. USA 115, 4027–4032 (2018).

    CAS  Google Scholar 

  60. 60.

    Osuri, A. et al. Greater stability of carbon capture in species-rich natural forests compared to species-poor plantations. Environ. Res. Lett. 15, 3 (2020).

    Google Scholar 

  61. 61.

    Jantz, P., Goetz, S. & Laporte, N. Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics. Nat. Clim. Change 4, 138–142 (2014).

    CAS  Google Scholar 

  62. 62.

    Miller, A. D., Thompson, J. R., Tepley, A. J. & Anderson-Teixeira, K. J. Alternative stable equilibria and critical thresholds created by fire regimes and plant responses in a fire-prone community. Ecography 42, 55–66 (2019).

    Google Scholar 

  63. 63.

    Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

    CAS  Google Scholar 

  64. 64.

    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS  Google Scholar 

  65. 65.

    Reyer, C. P. O. et al. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. J. Ecol. 103, 5–15 (2015).

    Google Scholar 

  66. 66.

    Grima, N. & Singh, S. J. How the end of armed conflicts influence forest cover and subsequently ecosystem services provision? An analysis of four case studies in biodiversity hotspots. Land Use Policy 81, 267–275 (2019).

    Google Scholar 

  67. 67.

    Reardon, S. FARC and the forest: peace is destroying Colombia’s jungle — and opening it to science. Nature 558, 169–170 (2018).

    CAS  Google Scholar 

  68. 68.

    Gaveau, D. L. A. et al. Rise and fall of forest loss and industrial plantations in Borneo (2000–2017). Conserv. Lett. 12, e12622 (2019).

    Google Scholar 

  69. 69.

    Menendez, P. et al. Valuing the protection services of mangroves at national scale: the Philippines. Ecosyst. Serv. 34, 24–36 (2018).

    Google Scholar 

  70. 70.

    Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297 (2011).

    CAS  Google Scholar 

  71. 71.

    Polidoro, B. A. et al. The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS ONE 5, e10095 (2010).

    Google Scholar 

  72. 72.

    Murdiyarso, D. et al. The potential of Indonesian mangrove forests for global climate change mitigation. Nat. Clim. Change 5, 1089–1092 (2015).

    CAS  Google Scholar 

  73. 73.

    Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS  Google Scholar 

  74. 74.

    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).

    Google Scholar 

  75. 75.

    Pan, Y., Birdsey, R. A., Phillips, O. L. & Jackson, R. B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. 44, 593–622 (2013).

    Google Scholar 

  76. 76.

    Steffen, W. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

    Google Scholar 

  77. 77.

    A Global Baseline of Carbon Storage in Collective Lands (Rights and Resources Initiative, 2018).

  78. 78.

    Blackman, A., Corral, L., Lima, E. S. & Asner, G. P. Titling indigenous communities protects forests in the Peruvian Amazon. Proc. Natl Acad. Sci. USA 114, 4123–4128 (2017).

    CAS  Google Scholar 

  79. 79.

    Tropical Forest Carbon in Indigenous Territories: A Global Analysis (AMPB, COICA, AMAN, REPALEAC, Woods Hole and EDF, 2015).

Download references


We thank the Norwegian International Climate and Forest Initiative (NICFI) for financial support (to S.C.P). The author’s views and findings expressed in this publication do not necessarily reflect the views of the NICFI.

Author information




W.T., D.H., J.R., J.F., J.F.H., L.P.K., J.S. and A.G. conceived the idea for the study. A.G., W.T. and S.S. interpreted the data and wrote the manuscript. All other authors edited the manuscript and advised on analysis. S.S. developed and performed the soil carbon analysis; K.A.T. developed the ForC-db on which much of the forest carbon analysis is based; S.C.P. developed the forest regeneration database on which forest sequestration rates are based; J.F.H. provided data and guidance on coastal ecosystems; and S.P. provided data and guidance on peatlands.

Corresponding author

Correspondence to Allie Goldstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion of methodology, Supplementary Fig. 1 and Supplementary Tables 1–12.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goldstein, A., Turner, W.R., Spawn, S.A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Chang. 10, 287–295 (2020).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing