Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Insights from Earth system model initial-condition large ensembles and future prospects

A Publisher Correction to this article was published on 26 June 2020

This article has been updated

Abstract

Internal variability in the climate system confounds assessment of human-induced climate change and imposes irreducible limits on the accuracy of climate change projections, especially at regional and decadal scales. A new collection of initial-condition large ensembles (LEs) generated with seven Earth system models under historical and future radiative forcing scenarios provides new insights into uncertainties due to internal variability versus model differences. These data enhance the assessment of climate change risks, including extreme events, and offer a powerful testbed for new methodologies aimed at separating forced signals from internal variability in the observational record. Opportunities and challenges confronting the design and dissemination of future LEs, including increased spatial resolution and model complexity alongside emerging Earth system applications, are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Internal variability and model differences in continental temperature trends.
Fig. 2: Decision-making under uncertainty: changes in mean and variability.
Fig. 3: Decision-making under uncertainty: changes in extremes.
Fig. 4: Schematic showing the how model LEs can be used to test methods suitable for application to the single observational record; for example, those aimed at separating forced climate change from internal variability.
Fig. 5: Interplay between a Model LE and an Observational LE.

Similar content being viewed by others

Data availability

All data used in this study are publicly available. The CMIP5 simulations are available through PCMDI, the large ensembles are available at the MMLE Archive and the observational data are available through the respective institutions.

Code availability

Code to produce Figs. 13 can be obtained from F.L.

Change history

References

  1. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  2. IPCC Climate Change 2013: The Physical Science Basis (Cambridge Univ. Press, 2013).

  3. Wallace, J. M., Deser, C., Smoliak, B. V. & Phillips, A. S. in Climate Change: Multidecadal and Beyond (eds. Chang, C.-P. et al.) 1–29 (World Scientific, 2015).

  4. Hall, A. Projecting regional change. Science 346, 1461–1462 (2014).

    CAS  Google Scholar 

  5. Xie, S. P. et al. Towards predictive understanding of regional climate change. Nat. Clim. Change 5, 921–930 (2015).

    Google Scholar 

  6. Stammer, D. et al. Science directions in a post COP21 world of transient climate change: enabling regional to local predictions in support of reliable climate information. Earths Future 6, 1498–1507 (2018).

    Google Scholar 

  7. Tebaldi, C. & Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Philos. T. R. Soc. A 365, 2053–2075 (2007).

    Google Scholar 

  8. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1107 (2009).

    Google Scholar 

  9. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dyn. 37, 407–418 (2011).

    Google Scholar 

  10. Deser, C., Knutti, R., Solomon, S. & Phillips, A. S. Communication of the role of natural variability in future North American climate. Nat. Clim. Change 2, 775–779 (2012).

    Google Scholar 

  11. Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Change 9, 102–110 (2019).

    Google Scholar 

  12. Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dyn. 38, 527–546 (2012).

    Google Scholar 

  13. Kumar, D. & Ganguly, A. R. Intercomparison of model response and internal variability across climate model ensembles. Clim. Dyn. 51, 207–219 (2018).

    Google Scholar 

  14. Mankin, J. S., Viviroli, D., Singh, D., Hoekstra, A. Y. & Diffenbaugh, N. S. The potential for snow to supply human water demand in the present and future. Environ. Res. Lett. 10, 114016 (2015).

    Google Scholar 

  15. Hawkins, E., Smith, R. S., Gregory, J. M. & Stainforth, D. A. Irreducible uncertainty in near-term climate projections. Clim. Dyn. 46, 3807–3819 (2016).

    Google Scholar 

  16. Machete, R. L. & Smith, L. A. Demonstrating the value of larger ensembles in forecasting physical systems. Tellus A 68, 28393 (2016).

    Google Scholar 

  17. Bengtsson, L. & Hodges, K. I. Can an ensemble climate simulation be used to separate climate change signals from internal unforced variability? Clim. Dyn. 52, 3553–3573 (2019).

    Google Scholar 

  18. Selten, F. M., Branstator, G. W., Dijkstra, H. A. & Kliphuis, M. Tropical origins for recent and future Northern Hemisphere climate change. Geophys. Res. Lett. 31, 4–7 (2004).

    Google Scholar 

  19. Kay, J. E. et al. The community Earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-13-00255.1 (2014).

  20. Otto, F. E. L. et al. Anthropogenic influence on the drivers of the Western Cape drought 2015–2017. Environ. Res. Lett. 13, 12 (2018).

    Google Scholar 

  21. Fučkar, N. S. et al. On high precipitation in Mozambique, Zimbabwe and Zambia in February 2018. Bull. Am. Meteorol. Soc. 10, S47–S52 (2019).

    Google Scholar 

  22. US CLIVAR Multi-Model LE Archive (NCAR); http://www.cesm.ucar.edu/projects/community-projects/MMLEA/

  23. Diffenbaugh, N. S., Swain, D. L. & Touma, D. Anthropogenic warming has increased drought risk in California. Proc. Natl Acad. Sci. USA 112, 3931–3936 (2015).

    CAS  Google Scholar 

  24. McKinley, G. A. et al. Timescales for detection of trends in the ocean carbon sink. Nature 530, 469–472 (2016).

    Google Scholar 

  25. Long, M. C., Deutsch, C. & Ito, T. Finding forced trends in oceanic oxygen. Global Biogeochem. Cycles 30, 381–397 (2016).

    CAS  Google Scholar 

  26. Thompson, D. W. J., Barnes, E. A., Deser, C., Foust, W. E. & Phillips, A. S. Quantifying the role of internal climate variability in future climate trends. J. Climate 28, 6443–6456 (2015).

    Google Scholar 

  27. Lehner, F., Deser, C. & Terray, L. Toward a new estimate of ‘time of emergence’ of anthropogenic warming: Insights from dynamical adjustment and a large initial-condition model ensemble. J. Climate 30, 7739–7756 (2017).

    Google Scholar 

  28. Dai, A. & Bloecker, C. E. Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Clim. Dyn. 52, 289–306 (2019).

    Google Scholar 

  29. Deser, C., Terray, L. & Phillips, A. S. Forced and internal components of winter air temperature trends over North America during the past 50 years: Mechanisms and implications. J. Climate 29, 2237–2258 (2016).

    Google Scholar 

  30. Sippel, S. et al. Uncovering the forced climate response from a single ensemble member using statistical learning. J. Climate https://doi.org/10.1175/JCLI-D-18-0882.1 (2019).

  31. Swain, D. L., Langenbrunner, B., Neelin, J. D. & Hall, A. Increasing precipitation volatility in twenty-first-century California. Nat. Clim. Change 8, 427–433 (2018).

    Google Scholar 

  32. Bureau of Reclamation Climate Change Adaptation Strategy: 2016 Progress Report (U.S. Department of the Interior Bureau of Reclamation, 2016).

  33. National Academies of Sciences, Engineering and Medicine Attribution of Extreme Weather Events in the Context of Climate Change (The National Academies Press, 2016).

  34. Lehner, F., Deser, C. & Sanderson, B. M. Future risk of record-breaking summer temperatures and its mitigation. Clim. Change 146, 1–13 (2016).

    Google Scholar 

  35. Mitchell, D. et al. Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design. Geosci. Model Dev. 10, 571–583 (2017).

    CAS  Google Scholar 

  36. Otto, F. E. L. et al. Climate change increases the probability of heavy rains in Northern England/Southern Scotland like those of storm Desmond—a real-time event attribution revisited. Environ. Res. Lett. 13, 2 (2018).

    Google Scholar 

  37. Ciavarella, A. et al. Upgrade of the HadGEM3-A based attribution system to high resolution and a new validation framework for probabilistic event attribution. Weather Clim. Extrem. 20, 9–32 (2018).

    Google Scholar 

  38. Lehner, F., Deser, C., Simpson, I. R. & Terray, L. Attributing the U. S. Southwest’s recent shift into drier conditions. Geophys. Res. Lett. 45, 6251–6261 (2018).

    Google Scholar 

  39. Seager, R. et al. Climate variability and change of mediterranean-type climates. J. Climate 32, 2887–2915 (2019).

    Google Scholar 

  40. Lehner, F. et al. The potential to reduce uncertainty in regional runoff projections from climate models. Nat. Clim. Change 9, 926–933 (2019).

    Google Scholar 

  41. Borodina, A., Fischer, E. M. & Knutti, R. Potential to constrain projections of hot temperature extremes. J. Climate 30, 9949–9964 (2017).

    Google Scholar 

  42. Massey, N. et al. Weather@home-development and validation of a very large ensemble modelling system for probabilistic event attribution. Q. J. R. Meteorol. Soc. 141, 1528–1545 (2015).

    Google Scholar 

  43. Mizuta, R. et al. Over 5,000 years of ensemble future climate simulations by 60-km global and 20-km regional atmospheric models. Bull. Am. Meteorol. Soc. 98, 1383–1398 (2017).

    Google Scholar 

  44. Pall, P. et al. Diagnosing conditional anthropogenic contributions to heavy Colorado rainfall in September 2013. Weather Clim. Extrem. 17, 1–6 (2017).

    Google Scholar 

  45. Merrifield, A. L. et al. Local and non-local land surface influence in European heatwave initial condition ensembles. Geophys. Res. Lett. 46, 14082–14092 (2019).

    Google Scholar 

  46. Leduc, M. et al. The ClimEx project: A 50-member ensemble of climate change projections at 12-km resolution over Europe and northeastern North America with the Canadian Regional Climate Model (CRCM5). J. Appl. Meteorol. Climatol. 58, 663–693 (2019).

    Google Scholar 

  47. McKinnon, K. & Deser, C. Internal variability and regional climate trends in an Observational Large Ensemble. J. Climate https://doi.org/10.1175/JCLI-D-17-0901.1 (2018).

  48. Frankignoul, C., Gastineau, G. & Kwon, Y. O. Estimation of the SST response to anthropogenic and external forcing and its impact on the Atlantic multidecadal oscillation and the Pacific decadal oscillation. J. Climate 30, 9871–9895 (2017).

    Google Scholar 

  49. Wills, R. C., Schneider, T., Hartmann, D. L., Battisti, D. S. & Wallace, J. M. Disentangling global warming, multidecadal variability, and El Niño in Pacific temperatures. Geophys. Res. Lett. 45, 2487–2496 (2018).

    Google Scholar 

  50. Barnes, E. A., Hurrell, J. W. & Uphoff, I. E. Viewing forced climate patterns through an AI lens. Geophys. Res. Lett. 46, 13389–13398 (2019).

    Google Scholar 

  51. Wills, R. C., Battisti, D. S., Armour, K. C., Schneider, T. & Deser, C. Identifying forced climate responses in climate model ensembles and observations using pattern recognition methods. J. Climate (in the press).

  52. Gould, S. J. Wonderful Life: The Burgess Shale and the Nature of History (W. W. Norton & Co., 1989).

  53. Newman, M., Alexander, M. A. & Scott, J. D. An empirical model of tropical ocean dynamics. Clim. Dyn. 37, 1823–1841 (2011).

    Google Scholar 

  54. Newman, M., Shin, S. I. & Alexander, M. A. Natural variation in ENSO flavors. Geophys. Res. Lett. 38, L14705 (2011).

    Google Scholar 

  55. Newman, M. An empirical benchmark for decadal forecasts of global surface temperature anomalies. J. Clim. 26, 5260–5269 (2013).

    Google Scholar 

  56. McKinnon, K. A., Poppick, A., Dunn-Sigouin, E. & Deser, C. An ‘Observational Large Ensemble’ to compare observed and modeled temperature trend uncertainty due to internal variability. J. Climate https://doi.org/10.1175/JCLI-D-16-0905.1 (2017).

  57. Link, R. et al. Fldgen v1.0: An emulator with internal variability and space-time correlation for Earth system models. Geosci. Model Dev. 12, 1477–1489 (2019).

    Google Scholar 

  58. Castruccio, S., Hu, Z., Sanderson, B., Karspeck, A. & Hammerling, D. Reproducing internal variability with few Ensemble runs. J. Climate https://doi.org/10.1175/JCLI-D-19-0280.1 (2019).

  59. Beusch, L., Gudmundsson, L. & Seneviratne, S. I. Emulating Earth System Model temperatures: from global mean temperature trajectories to grid-point level realizations on land. Earth Syst. Dyn. Discuss. https://doi.org/10.5194/esd-2019-34 (2019).

  60. Poppick, A., McInerney, D. J., Moyer, E. J. & Stein, M. L. Temperatures in transient climates: Improved methods for simulations with evolving temporal covariances. Ann. Appl. Stat. 10, 477–505 (2016).

    Google Scholar 

  61. Maher, N. et al. The Max Planck Institute Grand Ensemble – enabling the exploration of climate system variability. J. Adv. Model. Earth Syst. 11, 2050–2069 (2019).

    Google Scholar 

  62. Roberts, M. J. et al. The benefits of global high resolution for climate simulation process understanding and the enabling of stakeholder decisions at the regional scale. Bull. Am. Meteorol. Soc. 99, 2341–2359 (2018).

    Google Scholar 

  63. Freychet, N., Tett, S. F. B., Bollasina, M., Wang, K. C. & Hegerl, G. C. The local aerosol emission effect on surface shortwave radiation and temperatures. J. Adv. Model. Earth Syst. 11, 806–817 (2019).

    Google Scholar 

  64. Pendergrass, A. G. et al. Nonlinear response of extreme precipitation to warming in CESM1. Geophys. Res. Lett. 46, 10551–10560 (2019).

    Google Scholar 

  65. Aalbers, E. E., Lenderink, G., van Meijgaard, E. & van den Hurk, B. J. J. M. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability? Clim. Dyn. 50, 4745–4766 (2018).

    Google Scholar 

  66. Gómez-Navarro, J. J. et al. Event selection for dynamical downscaling: a neural network approach for physically-constrained precipitation events. Clim. Dyn. https://doi.org/10.1007/s00382-019-04818-w (2019).

  67. DiNezio, P. N., Deser, C., Okumura, Y. & Karspeck, A. Predictability of 2-year La Niña events in a coupled general circulation model. Clim. Dyn. 49, 4237–4261 (2017).

    Google Scholar 

  68. DiNezio, P. N. et al. A 2 year forecast for a 60–80% chance of La Niña in 2017–2018. Geophys. Res. Lett. 44, 11,624–11,635 (2017).

    Google Scholar 

  69. Lambert, F. H. et al. Interactions between perturbations to different Earth system components simulated by a fully-coupled climate model. Clim. Dyn. 41, 3055–3072 (2013).

    Google Scholar 

  70. Haarsma, R. J. et al. High resolution model intercomparison project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev. 9, 4185–4208 (2016).

    Google Scholar 

  71. Raff, D., Brekke, L., Werner, K., Wood, A. & White, K. Short-Term Water Management Decisions: User Needs for Improved Climate, Weather, and Hydrologic Information (NOAA, 2013).

  72. Hogrefe, C. et al. Simulating changes in regional air pollution over the eastern United States due to changes in global and regional climate and emissions. J. Geophys. Res. D Atmos. 109, D22 (2004).

    Google Scholar 

  73. Garcia-Menendez, F., Monier, E. & Selin, N. E. The role of natural variability in projections of climate change impacts on U. S. ozone pollution. Geophys. Res. Lett. 44, 2911–2921 (2017).

    CAS  Google Scholar 

  74. Horton, D. E., Skinner, C. B., Singh, D. & Diffenbaugh, N. S. Occurrence and persistence of future atmospheric stagnation events. Nat. Clim. Change 4, 698–703 (2014).

    Google Scholar 

  75. Shen, L., Mickley, L. J. & Gilleland, E. Impact of increasing heat waves on U. S. ozone episodes in the 2050s: Results from a multimodel analysis using extreme value theory. Geophys. Res. Lett. 43, 4017–4025 (2016).

    CAS  Google Scholar 

  76. Yue, X., Mickley, L. J. & Logan, J. A. Projection of wildfire activity in southern California in the mid-twenty-first century. Clim. Dyn. 43, 1973–1991 (2013).

    Google Scholar 

  77. Mulholland, D. P., Haines, K., Sparrow, S. N. & Wallom, D. Climate model forecast biases assessed with a perturbed physics ensemble. Clim. Dyn. 49, 1729–1746 (2017).

    Google Scholar 

  78. Rodgers, K. B., Lin, J. & Frölicher, T. L. Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences 12, 3301–3320 (2015).

    Google Scholar 

  79. Schlunegger, S. et al. Emergence of anthropogenic signals in the ocean carbon cycle. Nat. Clim. Change 9, 719–725 (2019).

    CAS  Google Scholar 

  80. Lovenduski, N. S., McKinley, G. A., Fay, A. R., Lindsay, K. & Long, M. C. Partitioning uncertainty in ocean carbon uptake projections: Internal variability, emission scenario, and model structure. Global Biogeochem. Cycles 30, 1276–1287 (2016).

    CAS  Google Scholar 

  81. Frölicher, T. L., Rodgers, K. B., Stock, C. A. & Cheung, W. W. L. Sources of uncertainties in 21st century projections of potential ocean ecosystem stressors. Global Biogeochem. Cycles 30, 1224–1243 (2016).

    Google Scholar 

  82. Krumhardt, K. M., Lovenduski, N. S., Long, M. C. & Lindsay, K. Avoidable impacts of ocean warming on marine primary production: insights from the CESM ensembles. Global Biogeochem. Cycles 31, 114–133 (2017).

    CAS  Google Scholar 

  83. Li, H. & Ilyina, T. Current and future decadal trends in the oceanic carbon uptake are dominated by internal variability. Geophys. Res. Lett. 45, 916–925 (2018).

    CAS  Google Scholar 

  84. Labe, Z., Ault, T. & Zurita-Milla, R. Identifying anomalously early spring onsets in the CESM large ensemble project. Clim. Dyn. 48, 3949–3966 (2017).

    Google Scholar 

  85. Fann, N. et al. The geographic distribution and economic value of climate change-related ozone health impacts in the United States in 2030. J. Air Waste Manag. Assoc. 65, 570–580 (2015).

    CAS  Google Scholar 

  86. Silva, R. A. et al. The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble. Atmos. Chem. Phys. 16, 9847–9862 (2016).

    CAS  Google Scholar 

  87. Rieder, H. E., Fiore, A. M., Horowitz, L. W. & Naik, V. Projecting policy-relevant metrics for high summertime ozone pollution events over the eastern United States due to climate and emission changes during the 21st century. J. Geophys. Res. 120, 784–800 (2015).

    Google Scholar 

  88. Dentener, F. et al. The global atmospheric environment for the next generation. Environ. Sci. Technol. 40, 3586–3594 (2006).

    CAS  Google Scholar 

  89. Schnell, J. L. et al. Effect of climate change on surface ozone over North America, Europe, and East Asia. Geophys. Res. Lett. 43, 3509–3518 (2016).

    CAS  Google Scholar 

  90. Barnes, E. A., Fiore, A. M. & Horowitz, L. W. Detection of trends in surface ozone in the presence of climate variability. J. Geophys. Res. 121, 6112–6129 (2016).

    Google Scholar 

  91. Saari, R. K., Mei, Y., Monier, E. & Garcia-Menendez, F. Effect of health-related uncertainty and natural variability on health impacts and cobenefits of climate policy. Environ. Sci. Technol. 53, 1098–1108 (2019).

    CAS  Google Scholar 

  92. Yeager, S. G. et al. Predicting near-term changes in the earth system: a large ensemble of initialized decadal prediction simulations using the community earth system model. Bull. Am. Meteorol. Soc. 99, 1867–1886 (2018).

    Google Scholar 

  93. Rew, R. & Davis, G. NetCDF: an interface for scientific data access. IEEE Comput. Graph. Appl. 10, 76–82 (1990).

    Google Scholar 

  94. Kirchmeier-Young, M. C., Zwiers, F. W. & Gillett, N. P. Attribution of extreme events in Arctic Sea ice extent. J. Climate 30, 553–571 (2017).

    Google Scholar 

  95. Jeffrey, S. et al. Australia’s CMIP5 submission using the CSIRO-Mk3. 6 model. Aust. Meteorol. Ocean. 63, 1–13 (2013).

    Google Scholar 

  96. Sun, L., Alexander, M. & Deser, C. Evolution of the global coupled climate response to Arctic sea ice loss during 1990–2090 and its contribution to climate change. J. Climate 31, 7823–7843 (2018).

    Google Scholar 

  97. Kay, J. E. et al. The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    Google Scholar 

  98. Hazeleger, W. et al. EC-Earth. Bull. Am. Meteorol. Soc. 91, 1357–1364 (2010).

    Google Scholar 

  99. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1079 (1997).

    Google Scholar 

  100. Trenberth, K. E. & Shea, D. J. Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett. 33, L12704 (2006).

    Google Scholar 

  101. Dai, A., Fyfe, J. C., Xie, S. P. & Dai, X. Decadal modulation of global surface temperature by internal climate variability. Nat. Clim. Change 5, 555–559 (2015).

    Google Scholar 

Download references

Acknowledgements

We thank the US National Science Foundation, National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, and Department of Energy for sponsoring the activities of the US CLIVAR Working Group on Large Ensembles. We also gratefully acknowledge all of the modelling groups listed in Table 1 for making their Large Ensemble simulations available in the Multi-Model Large Ensemble data repository. We thank the three anonymous reviewers for their constructive comments and suggestions, and J. Mankin for inspirational discussions on Large Ensemble use. This Perspective also benefited from discussions that took place at the US CLIVAR Workshop on Large Ensembles held July 2019 in Boulder, CO, USA. Some of this material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation (cooperative agreement no. 1852977).

Author information

Authors and Affiliations

Authors

Contributions

C.D., F.L. and K.R. conceived the study. C.D., F.L. and K.A.M. performed the analysis and created the figures. C.D. and F.L. led the writing of the manuscript, with contributions from all authors. C.D. and F.L. contributed equally to the work.

Corresponding author

Correspondence to C. Deser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Ryan Abernathey, Jens Christensen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deser, C., Lehner, F., Rodgers, K.B. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Chang. 10, 277–286 (2020). https://doi.org/10.1038/s41558-020-0731-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-020-0731-2

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene