Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Defining Southern Ocean fronts and their influence on biological and physical processes in a changing climate

Abstract

The Southern Ocean is a critical component of the global climate system and an important ecoregion that contains a diverse range of interdependent flora and fauna. It also hosts numerous fronts: sharp boundaries between waters with different characteristics. As they strongly influence exchanges between the ocean, atmosphere and cryosphere, fronts are of fundamental importance to the climate system. However, rapid advances in physical oceanography over the past 20 years have challenged previous definitions of fronts and their response to anthropogenic climate change. Here we review the implications of this recent research for the study of climate, ecology and biology in the Southern Ocean. We include a frontal definition ‘user’s guide’ to clarify the current debate and aid in future research.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Illustrations of Antarctic Circumpolar Current fronts.

Christopher Chapman/Louise Bell

Fig. 2: The changing conception of the Antarctic Circumpolar Current and its fronts.
Fig. 3: A cautionary example of using sea-surface height to track fronts.
Fig. 4: The influence of fronts on nutrients and phytoplankton blooms.
Fig. 5: Climate change in the Southern Ocean.

References

  1. 1.

    Rintoul, S. R. & Naveira Garabato, A. C. in Ocean Circulation and Climate: A 21st Century Perspective Vol. 103 (Siedler, G. et al.) 471–492 (Academic, 2013).

  2. 2.

    Deacon, G. The Hydrology of the Southern Ocean. Discovery Reports (Cambridge Univ. Press, 1937).

  3. 3.

    Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res. Part I 42, 641–673 (1995).

    Article  Google Scholar 

  4. 4.

    Sokolov, S. & Rintoul, S. R. Structure of Southern Ocean fronts at 140° E. J. Mar. Syst. 37, 151–184 (2002).

    Article  Google Scholar 

  5. 5.

    Sokolov, S. & Rintoul, S. R. On the relationship between fronts of the Antarctic Circumpolar Current and surface chlorophyll concentrations in the Southern Ocean. J. Geophys. Res. Oceans 112, C07030 (2007).

    Article  CAS  Google Scholar 

  6. 6.

    Grant, S., Constable, A., Raymond, B. & Doust, S. Bioregionalisation of the Southern Ocean: Report of the Experts Workshop (ACE-CRC and WWF Australia, 2006).

  7. 7.

    Bost, C. A. et al. The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J. Mar. Syst. 78, 363–376 (2009).

    Article  Google Scholar 

  8. 8.

    Sallée, J. B. Southern Ocean warming. Oceanography 31, 52–62 (2018).

    Article  Google Scholar 

  9. 9.

    Constable, A. J. et al. Climate change and Southern Ocean ecosystems. I: How changes in physical habitats directly affect marine biota. Glob. Change Biol. 20, 3004–3025 (2014).

    Article  Google Scholar 

  10. 10.

    Rogers, A. D. et al. Antarctic futures: an assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the Southern Ocean. Annu. Rev. Mar. Sci. 12, 87–120 (2019).

    Article  Google Scholar 

  11. 11.

    Treasure, A. et al. Marine mammals exploring the oceans pole to pole: a review of the MEOP consortium. Oceanography 30, 132–138 (2017).

    Article  Google Scholar 

  12. 12.

    Chapman, C. C. Southern Ocean jets and how to find them: improving and comparing common jet detection methods. J. Geophys. Res. Oceans 119, 4318–4339 (2014).

    Article  Google Scholar 

  13. 13.

    Naveira-Garabato, A. C., Ferrari, R. & Polzin, K. L. Eddy stirring in the Southern Ocean. J. Geophys. Res. Oceans 116, C09019 (2011). This paper provides a detailed examination of the ‘mixing barrier’ effect in Southern Ocean fronts, central to their role in the climate system.

    Article  Google Scholar 

  14. 14.

    Thompson, A. F. & Sallée, J.-B. Jets and topography: jet transitions and the impact on transport in the Antarctic circumpolar current. J. Phys. Oceanogr. 42, 956–972 (2012).

    Article  Google Scholar 

  15. 15.

    Chapman, C. & Sallée, J.-B. Isopycnal mixing suppression by the Antarctic Circumpolar Current and the Southern Ocean meridional overturning circulation. J. Phys. Oceanogr. 47, 2023–2045 (2017).

    Article  Google Scholar 

  16. 16.

    Morrison, A., Frölicher, T. & Sarmiento, J. L. Upwelling in the Southern Ocean. Phys. Today 68, 27–32 (2015).

    Article  Google Scholar 

  17. 17.

    Stukel, M. R. et al. Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction. Proc. Natl Acad. Sci. USA 114, 1252–1257 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Williams, R. G., Wilson, C. & Hughes, C. W. Ocean and atmosphere storm tracks: the role of eddy vorticity forcing. J. Phys. Oceanogr. 37, 2267–2289 (2007).

    Article  Google Scholar 

  19. 19.

    Chambers, D. P. Using kinetic energy measurements from altimetry to detect shifts in the positions of fronts in the Southern Ocean. Ocean Sci. 14, 105–116 (2018).

    Article  Google Scholar 

  20. 20.

    d’Ovidio, F., De Monte, S., Alvain, S., Dandonneau, Y. & Lévy, M. Fluid dynamical niches of phytoplankton types. Proc. Natl Acad. Sci. USA 107, 18366–18370 (2010).

    Article  Google Scholar 

  21. 21.

    Lévy, M., Franks, P. J. S. & Shafer Smith, K. The role of submesoscale currents in structuring marine ecosystems. Nat. Commun. 9, 4758 (2018).

    Article  CAS  Google Scholar 

  22. 22.

    Belkin, I. M. & Gordon, A. L. Southern Ocean fronts from the Greenwich meridian to Tasmania. J. Geophys. Res. Oceans 101, 3675–3696 (1996).

    Article  Google Scholar 

  23. 23.

    Thompson, A. F., Haynes, P. H., Wilson, C. & Richards, K. J. Rapid Southern Ocean front transitions in an eddy-resolving ocean GCM. Geophys. Res. Lett. 37, https://doi.org/10.1029/2010GL045386 (2010).

  24. 24.

    Langlais, C., Rintoul, S. & Schiller, A. Variability and mesoscale activity of the Southern Ocean fronts: identification of a circumpolar coordinate system. Ocean Model. 39, 79–96 (2011).

    Article  Google Scholar 

  25. 25.

    Chapman, C. C. New perspectives on frontal variability in the Southern Ocean. J. Phys. Oceanogr. 47, 1151–1168 (2017).

    Article  Google Scholar 

  26. 26.

    Hughes, C. W. & Ash, E. R. Eddy forcing of the mean flow in the Southern Ocean. J. Geophys. Res. Oceans 106, 2713–2722 (2001).

    Article  Google Scholar 

  27. 27.

    Hughes, C. W., Thompson, A. F. & Wilson, C. Identification of jets and mixing barriers from sea level and vorticity measurements using simple statistics. Ocean Model. 32, 44–57 (2010).

    Article  Google Scholar 

  28. 28.

    Dufour, C. O. et al. Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean. J. Phys. Oceanogr. 45, 3057–3081 (2015).

    Article  Google Scholar 

  29. 29.

    Chapman, C. & Sallée, J.-B. Can we reconstruct mean and eddy fluxes from Argo floats? Ocean Model. 120, 83–100 (2017).

    Article  Google Scholar 

  30. 30.

    Rintoul, S. The global influence of localized dynamics in the Southern Ocean. Nature 558, 209–218 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Sallée, J. B., Speer, K. & Morrow, R. Response of the Antarctic Circumpolar Current to atmospheric variability. J. Clim. 21, 3020–3039 (2008).

    Article  Google Scholar 

  32. 32.

    Sokolov, S. & Rintoul, S. R. Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths. J. Geophys. Res. Oceans 114, https://doi.org/10.1029/2008JC005108 (2009).

  33. 33.

    Sokolov, S. & Rintoul, S. R. Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 2. Variability and relationship to sea surface height. J. Geophys. Res. Oceans 114, https://doi.org/10.1029/2008JC005248 (2009).

  34. 34.

    Kim, Y. S. & Orsi, A. H. On the variability of Antarctic Circumpolar Current fronts inferred from 1992–2011 altimetry. J. Phys. Oceanogr. 44, 3054–3071 (2014).

    Article  Google Scholar 

  35. 35.

    Graham, R. M., de Boer, A. M., Heywood, K. J., Chapman, M. R. & Stevens, D. P. Southern Ocean fronts: controlled by wind or topography? J. Geophys. Res. Oceans 117, https://doi.org/10.1029/2012JC007887 (2012). Describes in detail the problems with ‘global’ methods for studying the variability, and the insensitivity of fronts to changes in wind forcing.

  36. 36.

    Thompson, A. F., Haynes, P. H., Wilson, C. & Richards, K. J. Rapid Southern Ocean front transitions in an eddy-resolving ocean GCM. Geophys. Res. Lett. 37, https://doi.org/10.1029/2010GL045386 (2010).

  37. 37.

    Rhines, P. B. Jets. Chaos 4, 313–339 (1994).

    Article  Google Scholar 

  38. 38.

    Meijers, A. J. S. et al. The role of ocean dynamics in king penguin range estimation. Nat. Clim. Change 9, 120–121 (2019).

    Article  Google Scholar 

  39. 39.

    Moore, J. K., Abbott, M. R. & Richman, J. G. Location and dynamics of the Antarctic Polar Front from satellite sea surface temperature data. J. Geophys. Res. Oceans 104, 3059–3073 (1999).

    Article  Google Scholar 

  40. 40.

    Dong, S., Sprintall, J. & Gille, S. T. Location of the Antarctic Polar Front from AMSR-E satellite sea surface temperature measurements. J. Phys. Oceanogr. 36, 2075–2089 (2006).

    Article  Google Scholar 

  41. 41.

    Freeman, N. M., Lovenduski, N. S. & Gent, P. R. Temporal variability in the Antarctic Polar Front (2002–2014). J. Geophys. Res. Oceans 121, 7263–7276 (2016).

    Article  Google Scholar 

  42. 42.

    Shao, A. E., Gille, S. T., Mecking, S. & Thompson, L. Properties of the Subantarctic Front and Polar Front from the skewness of sea level anomaly. J. Geophys. Res. Oceans 120, 5179–5193 (2015).

    Article  Google Scholar 

  43. 43.

    Pauthenet, E. et al. Seasonal meandering of the Polar Front upstream of the Kerguelen Plateau. Geophys. Res. Lett. 45, 9774–9781 (2018).

    Article  Google Scholar 

  44. 44.

    Jones, D. C., Holt, H. J., Meijers, A. J. S. & Shuckburgh, E. Unsupervised clustering of Southern Ocean Argo float temperature profiles. J. Geophys. Res. Oceans 124, 390–402 (2019).

    Article  Google Scholar 

  45. 45.

    Sallée, J.-B., Matear, R., Rintoul, S. & Lenton, A. Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. Nat. Geosci. 5, 579–584 (2012).

    Article  CAS  Google Scholar 

  46. 46.

    Palter, J. B., Sarmiento, J. L., Marinov, I. & Gruber, N. in Chemical Oceanography of Frontal Zones (ed. Belkin, I. M.) https://doi.org/10.1007/698_2013_241 (Springer, 2013). Review of global biogeochemical fronts provides additional detail on processes described here, as well as a discussion of cross-frontal transport properties.

  47. 47.

    Freeman, N. M. et al. The variable and changing Southern Ocean silicate front: insights from the CESM Large Ensemble. Glob. Biogeochem. Cycles 32, 752–768 (2018).

    CAS  Article  Google Scholar 

  48. 48.

    Langlais, C. L. et al. Stationary Rossby waves dominate subduction of anthropogenic carbon in the Southern Ocean. Sci. Rep. 7, 17076 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    Klocker, A. Opening the window to the Southern Ocean: the role of jet dynamics. Sci. Adv. 4, eaao4719 (2018). Model-based study that demonstrates the importance of frontal jet interaction with bathymetry for driving upwelling and subduction.

    CAS  Article  Google Scholar 

  50. 50.

    Rintoul, S. R. et al. Choosing the future of Antarctica. Nature 558, 233–241 (2018).

    CAS  Article  Google Scholar 

  51. 51.

    Llort, J. et al. Evaluating Southern Ocean carbon eddy-pump from biogeochemical-Argo floats. J. Geophys. Res. Oceans 123, 971–984 (2018). Using data from new biogeochemical Argo floats, this study clarifies the role of mesoscale features, including fronts, on the subduction of surface water into the ocean interior.

    Article  Google Scholar 

  52. 52.

    Venables, H. & Moore, C. M. Phytoplankton and light limitation in the southern ocean: learning from high-nutrient, high-chlorophyll areas. J. Geophys. Res. Oceans 115, https://doi.org/10.1029/2009JC005361 (2010).

  53. 53.

    Bristow, L. A., Mohr, W., Ahmerkamp, S. & Kuypers, M. M. M. Nutrients that limit growth in the ocean. Curr. Biol. 27, R474–R478 (2017).

    CAS  Article  Google Scholar 

  54. 54.

    Sokolov, S. & Rintoul, S. R. On the relationship between fronts of the Antarctic Circumpolar Current and surface chlorophyll concentrations in the Southern Ocean. J. Geophys. Res. Oceans 112, https://doi.org/10.1029/2006JC004072 (2007).

  55. 55.

    Thomalla, S. J., Fauchereau, N., Swart, S. & Monteiro, P. M. S. Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean. Biogeosciences 8, 2849–2866 (2011).

    CAS  Article  Google Scholar 

  56. 56.

    Graham, R. M., De Boer, A. M., van Sebille, E., Kohfeld, K. E. & Schlosser, C. Inferring source regions and supply mechanisms of iron in the Southern Ocean from satellite chlorophyll data. Deep Sea Res. Part I 104, 9–25 (2015).

    CAS  Article  Google Scholar 

  57. 57.

    NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra Chlorophyll Data (NASA, 2018).

  58. 58.

    Hunt, B. P. V. & Hosie, G. W. Zonal structure of zooplankton communities in the Southern Ocean south of Australia: results from a 2150 km continuous plankton recorder transect. Deep Sea Res. Part I 52, 1241–1271 (2005).

    Article  Google Scholar 

  59. 59.

    Koubbi, P. et al. Spatial distribution and inter-annual variations in the size frequency distribution and abundances of Pleuragramma antarcticum larvae in the Dumont d’Urville Sea from 2004 to 2010. Polar Sci. 5, 225–238 (2011).

    Article  Google Scholar 

  60. 60.

    O’Toole, M., Guinet, C., Lea, M.-A. & Hindell, M. Marine predators and phytoplankton: how elephant seals use the recurrent Kerguelen plume. Mar. Ecol. Prog. Ser. 581, 215–227 (2017).

    Article  CAS  Google Scholar 

  61. 61.

    Deppeler, S. L. & Davidson, A. T. Southern Ocean phytoplankton in a changing climate. Front. Mar. Sci. 4, https://doi.org/10.3389/fmars.2017.00040 (2017).

  62. 62.

    Charrassin, J. B., Park, Y.-H., Le Maho, Y. & Bost, C.-A. Penguins as oceanographers unravel hidden mechanisms of marine productivity. Ecol. Lett. 5, 317–319 (2002).

    Article  Google Scholar 

  63. 63.

    Charrassin, J. B. & Bost, C. Utilisation of the oceanic habitat by king penguins over the annual cycle. Mar. Ecol. Prog. Ser. 221, 285–297 (2001).

    Article  Google Scholar 

  64. 64.

    Charrassin, J. B., Park, Y.-H., Le Maho, Y. & Bost, C.-A. Fine resolution 3D temperature fields off Kerguelen from instrumented penguins. Deep Sea Res. Part I 51, 2091–2103 (2004).

    Article  Google Scholar 

  65. 65.

    Sokolov, S., Rintoul, S. R. & Wienecke, B. Tracking the polar front south of New Zealand using penguin dive data. Deep Sea Res. Part I 53, 591–607 (2006).

    Article  Google Scholar 

  66. 66.

    Scheffer, A., Trathan, P. N. & Collins, M. Foraging behaviour of king penguins (Aptenodytes patagonicus) in relation to predictable mesoscale oceanographic features in the Polar Front Zone to the north of South Georgia. Prog. Oceanogr. 86, 232–245 (2010). Study of a marine predator that successfully integrates biotelemetry data with environmentally remote sensed data to conclusively reveal the interactions between biology and environmental conditions.

    Article  Google Scholar 

  67. 67.

    Péron, C., Weimerskirch, H. & Bost, C.-A. Projected poleward shift of king penguins’ (Aptenodytes patagonicus) foraging range at the Crozet Islands, southern Indian Ocean. Proc. R. Soc. B 279, 2515–2523 (2012).

    Article  Google Scholar 

  68. 68.

    Cristofari, R. et al. Climate-driven range shifts of the king penguin in a fragmented ecosystem. Nat. Clim. Change 8, 245–251 (2018).

    Article  Google Scholar 

  69. 69.

    Hunt, G. L. Jr, Harrison, N. M. & Cooney, R. T. The influence of hydrographic structure and prey abundance on foraging of least auklets. Stud. Avian Biol. 14, 7–22 (1990).

    Google Scholar 

  70. 70.

    Woehler, E., Raymond, B. & Watts, D. J. Convergence or divergence: where do short-tailed shearwaters forage in the Southern Ocean? Mar. Ecol. Prog. Ser. 324, 261–270 (2006).

    Article  Google Scholar 

  71. 71.

    Commins, M. L., Ansorge, I. & Ryan, P. G. Multi-scale factors influencing seabird assemblages in the African sector of the Southern Ocean. Antarct. Sci. 26, 38–48 (2014).

    Article  Google Scholar 

  72. 72.

    Lea, M.-A. & Dubroca, L. Fine-scale linkages between the diving behaviour of Antarctic fur seals and oceanographic features in the southern Indian Ocean. ICES J. Mar. Sci. 60, 990–1002 (2003).

    Article  Google Scholar 

  73. 73.

    Lea, M.-A. et al. Impacts of climatic anomalies on provisioning strategies of a Southern Ocean predator. Mar. Ecol. Prog. Ser. 310, 297–310 (2006).

    Article  Google Scholar 

  74. 74.

    Guinet, C. et al. Spatial distribution of foraging in female Antarctic fur seals Arctocephalus gazella in relation to oceanographic variables: a scale-dependent approach using geographic information systems. Mar. Ecol. Prog. Ser. 219, 251–264 (2001).

    Article  Google Scholar 

  75. 75.

    Béhagle, N. et al. Acoustic micronektonic distribution is structured by macroscale oceanographic processes across 20–50 °S latitudes in the South-Western Indian Ocean. Deep Sea Res. Part I 110, 20–32 (2016).

    Article  Google Scholar 

  76. 76.

    Gordine, S. A., Fedak, M. A. & Boehme, L. The importance of Southern Ocean frontal systems for the improvement of body condition in southern elephant seals. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 283–304 (2019).

    Article  Google Scholar 

  77. 77.

    Weimerskirch, H., Åkesson, S. & Pinaud, D. Postnatal dispersal of wandering albatrosses Diomedea exulans: implications for the conservation of the species. J. Avian Biol. 37, 23–28 (2006).

    Article  Google Scholar 

  78. 78.

    Bailleul, F., Cotte, C. & Guinet, C. Mesoscale eddies as foraging area of a deep-diving predator, the southern elephant seal. Mar. Ecol. Prog. Ser. 408, 251–264 (2010).

    Article  Google Scholar 

  79. 79.

    Della Penna, A., De Monte, S., Kestenare, E., Guinet, C. & d’Ovidio, F. Quasi-planktonic behavior of foraging top marine predators. Sci. Rep. 5, 18063 (2015).

    CAS  Article  Google Scholar 

  80. 80.

    Cotté, C., d’Ovidio, F., Dragon, A.-C., Guinet, C. & Lévy, M. Flexible preference of southern elephant seals for distinct mesoscale features within the Antarctic Circumpolar Current. Prog. Oceanogr. 131, 46–58 (2015).

    Article  Google Scholar 

  81. 81.

    Hindell, M. A. et al. Circumpolar habitat use in the southern elephant seal: implications for foraging success and population trajectories. Ecosphere 7, e01213 (2016).

    Article  Google Scholar 

  82. 82.

    Siegelman, L., O’Toole, M., Flexas, M., Rivière, P. & Klein, P. Submesoscale ocean fronts act as biological hotspot for southern elephant seal. Sci. Rep. 9, 5588 (2019). This paper exploits a modern and unique dataset to reveal insights into both physical and biological systems that influence marine mammal behaviour.

    Article  CAS  Google Scholar 

  83. 83.

    Nel, D. C. et al. Exploitation of mesoscale oceanographic features by Grey-headed Albatrosses (Thalassarche chrysostoma) in the southern Indian Ocean. Mar. Ecol. Prog. Ser. 217, 15–26 (2001).

    Article  Google Scholar 

  84. 84.

    Swart, N. C., Gille, S., Fyfe, J. C. & Gillett, N. P. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci. 11, 836–841 (2018).

    CAS  Article  Google Scholar 

  85. 85.

    Jones, J. et al. Assessing recent trends in high-latitude Southern Hemisphere climate. Nat. Clim. Change 6, 917–926 (2016).

    Article  Google Scholar 

  86. 86.

    Fyfe, J. C. & Saenko, O. A. Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett. 33, https://doi.org/10.1029/2005GL025332 (2006).

  87. 87.

    Bracegirdle, T. J. et al. Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. J. Geophys. Res. Atmos. 118, 547–562 (2013).

    Article  Google Scholar 

  88. 88.

    Meijers, A. J. S. The Southern Ocean in the Coupled Model Intercomparison Project phase 5. Phil. Trans. R. Soc. A 372, 20130296 (2014).

    CAS  Article  Google Scholar 

  89. 89.

    Billany, W., Swart, S., Hermes, J. & Reason, C. J. C. Variability of the Southern Ocean fronts at the Greenwich Meridian. J. Mar. Syst. 82, 304–310 (2010).

    Article  Google Scholar 

  90. 90.

    Downes, S. M., Budnick, A. S., Sarmiento, J. L. & Farneti, R. Impacts of wind stress on the Antarctic Circumpolar Current fronts and associated subduction. Geophys. Res. Lett. 38 https://doi.org/10.1029/2011GL047668 (2011).

  91. 91.

    Gille, S. T. Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Clim. 21, 4749–4765 (2008).

    Article  Google Scholar 

  92. 92.

    Meijers, A. J. S., Bindoff, N. L. & Rintoul, S. R. Frontal movements and property fluxes: contributions to heat and freshwater trends in the Southern Ocean. J. Geophys. Res. Oceans 116, https://doi.org/10.1029/2010JC006832 (2011).

  93. 93.

    Böning, C., Dispert, A., Visbeck, M., Rintoul, S. & Schwarzkopf, F. The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci. 1, 864–869 (2008).

    Article  CAS  Google Scholar 

  94. 94.

    Gille, S. T. Meridional displacement of the Antarctic Circumpolar Current. Phil. Trans. R. Soc. A 372, 20130273 (2014).

    Article  Google Scholar 

  95. 95.

    Meijers, A. J. S. et al. Representation of the Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios. J. Geophys. Res. Oceans 117 https://doi.org/10.1029/2012JC008412 (2012).

  96. 96.

    Dunne, J. P. et al. GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).

    Article  Google Scholar 

  97. 97.

    Armour, K. C., Marshall, J. C., Scott, J., Donohoe, A. & Newsom, E. R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9, 549–554 (2016).

    CAS  Article  Google Scholar 

  98. 98.

    Bost, C. et al. Large-scale climatic anomalies affect marine predator foraging behaviour and demography. Nat. Commun. 6, 8220 (2015).

    CAS  Article  Google Scholar 

  99. 99.

    Newman, L. et al. Delivering sustained, coordinated, and integrated observations of the Southern Ocean for global impact. Front. Mar. Sci. 6, 433 (2019).

    Article  Google Scholar 

  100. 100.

    Garcia, H. E. et al. in World Ocean Atlas 2018 (ed. Mishonov, A.) 35 (NOAA, 2018).

Download references

Acknowledgements

C.C.C. received funding through the CSIRO Decadal Climate Forecasting Project and the Earth Systems and Climate Change Hub of the Australian Government’s National Environmental Science Program. A.M. acknowledges support from the ARC Centre of Excellence for Climate Extremes (CE170100023). The Ssalto/Duacs altimeter products were produced and distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS) (http://www.marine.copernicus.eu). J.-B.S. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 637770).

Author information

Affiliations

Authors

Contributions

This Review was conceived by C.C.C. and M.-A.L., with input from J.-B.S. C.C.C. led the drafting effort and created all figures, with input from all authors. Table 1 was developed by C.C.C. and A.M. All authors contributed to the final article.

Corresponding author

Correspondence to Christopher C. Chapman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Julian Gutt, Sebastiaan Swart and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chapman, C.C., Lea, MA., Meyer, A. et al. Defining Southern Ocean fronts and their influence on biological and physical processes in a changing climate. Nat. Clim. Chang. 10, 209–219 (2020). https://doi.org/10.1038/s41558-020-0705-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing