Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biodiversity of intertidal food webs in response to warming across latitudes

Abstract

Global warming threatens community stability and biodiversity around the globe. Knowledge of the mechanisms underlying the responses to rising temperatures depends heavily on generic food-web models that do not account for changes in network structure along latitudes and temperature gradients. Using 124 marine rock-pool food webs sampled across four continents, we show that despite substantial variation in ambient temperature (mean 11.5–28.4 °C), similar empirical food-web and body-mass structures emerge. We have used dynamic modelling to test whether communities from warmer regions are more sensitive to warming and found a general hump-shaped relationship between simulated biodiversity and temperature (gradient from 0–50 °C). This implies that an expected anthropogenic global warming of 4 °C should increase biodiversity in arctic to temperate regions while biodiversity in tropical regions should decrease. Interestingly, simulations of synthetic networks did not yield similar results, which stresses the importance of considering the specificities of natural food webs for predicting community responses to environmental changes.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Structure and distribution of natural rock-pool food webs.
Fig. 2: Analysis of community structure.
Fig. 3: Response of persistence to temperature increase, depending on local temperature conditions.
Fig. 4: Relationship between species persistence and temperature in simulations.
Fig. 5: Comparison of trophic levels and herbivory links between niche and experimental networks.

Data availability

The data that support the findings of this study are archived in a public repository accessible at: https://doi.org/10.25829/idiv.283-3-756 (ref. 50).

Code availability

The codes used to run the model and to analyse the results are available on Github at https://doi.org/10.5281/zenodo.3578440 (ref. 51).

References

  1. 1.

    Brose, U. et al. Climate change in size-structured ecosystems. Phil. Trans. R. Soc. B 367, 2903–2912 (2012).

    Google Scholar 

  2. 2.

    Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).

    Google Scholar 

  3. 3.

    Ehnes, R. B., Rall, B. C. & Brose, U. Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates. Ecol. Lett. 14, 993–1000 (2011).

    Google Scholar 

  4. 4.

    Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).

    CAS  Google Scholar 

  5. 5.

    Englund, G., Öhlund, G., Hein, C. L. & Diehl, S. Temperature dependence of the functional response. Ecol. Lett. 14, 914–921 (2011).

    Google Scholar 

  6. 6.

    Jochum, M., Schneider, F. D., Crowe, T. P., Brose, U. & O’Gorman, E. J. Climate-induced changes in bottom-up and top-down processes independently alter a marine ecosystem. Phil. Trans. R. Soc. B 367, 2962–2970 (2012).

    Google Scholar 

  7. 7.

    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).

    CAS  Google Scholar 

  8. 8.

    O’Gorman, E. J. et al. Unexpected changes in community size structure in a natural warming experiment. Nat. Clim. Change 7, 659–663 (2017).

    Google Scholar 

  9. 9.

    Eklöf, A. et al. The dimensionality of ecological networks. Ecol. Lett. 16, 577–583 (2013).

    Google Scholar 

  10. 10.

    Binzer, A., Guill, C., Rall, B. C. & Brose, U. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure. Glob. Change Biol. 22, 220–227 (2016).

    Google Scholar 

  11. 11.

    Schwarz, B. et al. Warming alters energetic structure and function but not resilience of soil food webs. Nat. Clim. Change 7, 895–900 (2017).

    Google Scholar 

  12. 12.

    Vasseur, D. A. & McCann, K. S. A mechanistic approach for modeling temperature‐dependent consumer‐resource dynamics. Am. Nat. 166, 184–198 (2005).

    Google Scholar 

  13. 13.

    Petchey, O. L., McPhearson, P. T., Casey, T. M. & Morin, P. J. Environmental warming alters food-web structure and ecosystem function. Nature 402, 69–72 (1999).

    CAS  Google Scholar 

  14. 14.

    Rall, B. C. et al. Universal temperature and body-mass scaling of feeding rates. Phil. Trans. R. Soc. B 367, 2923–2934 (2012).

    Google Scholar 

  15. 15.

    Binzer, A., Guill, C., Brose, U. & Rall, B. C. The dynamics of food chains under climate change and nutrient enrichment. Phil. Trans. R. Soc. B 367, 2935–2944 (2012).

    Google Scholar 

  16. 16.

    Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).

    CAS  Google Scholar 

  17. 17.

    Shurin, J. B., Clasen, J. L., Greig, H. S., Kratina, P. & Thompson, P. L. Warming shifts top-down and bottom-up control of pond food web structure and function. Phil. Trans. R. Soc. B 367, 3008–3017 (2012).

    Google Scholar 

  18. 18.

    Kéfi, S. et al. Network structure beyond food webs: mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology 96, 291–303 (2015).

    Google Scholar 

  19. 19.

    Potapov, A. M., Brose, U., Scheu, S. & Tiunov, A. V. Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. Am. Nat. 194, 823–839 (2019).

    Google Scholar 

  20. 20.

    Mendonça, V. et al. What’s in a tide pool? Just as much food web network complexity as in large open ecosystems. PLoS ONE 13, e0200066 (2018).

    Google Scholar 

  21. 21.

    Vucic-Pestic, O., Ehnes, R. B., Rall, B. C. & Brose, U. Warming up the system: higher predator feeding rates but lower energetic efficiencies. Glob. Chang. Biol. 17, 1301–1310 (2011).

    Google Scholar 

  22. 22.

    Fussmann, K. E., Schwarzmüller, F., Brose, U., Jousset, A. & Rall, B. C. Ecological stability in response to warming. Nat. Clim. Change 4, 206–210 (2014).

    Google Scholar 

  23. 23.

    Lindeman, R. L. The trophic-dynamic aspect of ecology. Ecology 23, 399–417 (1942).

    Google Scholar 

  24. 24.

    Lang, B., Ehnes, R. B., Brose, U. & Rall, B. C. Temperature and consumer type dependencies of energy flows in natural communities. Oikos 126, 1717–1725 (2017).

    Google Scholar 

  25. 25.

    Portalier, S. M. J., Fussmann, G. F., Loreau, M. & Cherif, M. The mechanics of predator–prey interactions: first principles of physics predict predator–prey size ratios. Funct. Ecol. 33, 323–334 (2019).

    Google Scholar 

  26. 26.

    Ho, H., Tylianakis, J. M., Zheng, J. X. & Pawar, S. Predation risk influences food‐web structure by constraining species diet choice. Ecol. Lett. 22, 1734–1745 (2019).

    Google Scholar 

  27. 27.

    Brose, U. et al. Predator traits determine food-web architecture across ecosystems. Nat. Ecol. Evol. 3, 919–927 (2019).

    Google Scholar 

  28. 28.

    Kéfi, S. et al. More than a meal…integrating non-feeding interactions into food webs. Ecol. Lett. 15, 291–300 (2012).

    Google Scholar 

  29. 29.

    Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445, 202–205 (2007).

    CAS  Google Scholar 

  30. 30.

    Gauzens, B., Legendre, S., Lazzaro, X. & Lacroix, G. Intermediate predation pressure leads to maximal complexity in food webs. Oikos 125, 595–603 (2016).

    Google Scholar 

  31. 31.

    Riede, J. O. et al. Scaling of food-web properties with diversity and complexity across ecosystems. Adv. Ecol. Res. 42, 139–170 (2010).

    Google Scholar 

  32. 32.

    Petchey, O. L., Beckerman, A. P., Riede, J. O. & Warren, P. H. Size, foraging, and food web structure. Proc. Natl Acad. Sci. USA 105, 4191–4196 (2008).

    CAS  Google Scholar 

  33. 33.

    Petchey, O. L., Brose, U. & Rall, B. C. Predicting the effects of temperature on food web connectance. Phil. Trans. R. Soc. B 365, 2081–2091 (2010).

    Google Scholar 

  34. 34.

    Antiqueira, P. A. P., Petchey, O. L. & Romero, G. Q. Warming and top predator loss drive ecosystem multifunctionality. Ecol. Lett. 21, 72–82 (2018).

    Google Scholar 

  35. 35.

    Amarasekare, P. Effects of temperature on consumer-resource interactions. J. Anim. Ecol. 84, 665–679 (2015).

    Google Scholar 

  36. 36.

    Fussmann, K. E., Rosenbaum, B., Brose, U. & Rall, B. C. Interactive effects of shifting body size and feeding adaptation drive interaction strengths of protist predators under warming. Preprint at bioRxiv https://doi.org/10.1101/101675 (2017).

  37. 37.

    Weinbach, A., Allhoff, K., Thebault, E., Massol, F. & Loeuille, N. Selective effects of temperature on body mass depend on trophic interactions and network position. Preprint at bioRxiv https://doi.org/10.1101/233742 (2017).

  38. 38.

    Van Der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Phil. Trans. R. Soc. B 365, 2025–2034 (2010).

    Google Scholar 

  39. 39.

    Eklöf, A., Kaneryd, L. & Münger, P. Climate change in metacommunities: dispersal gives double-sided effects on persistence. Phil. Trans. R. Soc. B 367, 2945–2954 (2012).

    Google Scholar 

  40. 40.

    Sentis, A., Binzer, A. & Boukal, D. S. Temperature-size responses alter food chain persistence across environmental gradients. Ecol. Lett. 20, 852–862 (2017).

    Google Scholar 

  41. 41.

    Tewksburry, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).

    Google Scholar 

  42. 42.

    Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).

    CAS  Google Scholar 

  43. 43.

    Digel, C., Curtsdotter, A., Riede, J., Klarner, B. & Brose, U. Unravelling the complex structure of forest soil food webs: higher omnivory and more trophic levels. Oikos 123, 1157–1172 (2014).

    Google Scholar 

  44. 44.

    Yodzis, P. & Innes, S. Body size and consumer-resource dynamics. Am. Nat. 139, 1151–1175 (1992).

    Google Scholar 

  45. 45.

    Hirt, M. R., Lauermann, T., Brose, U., Noldus, L. P. J. J. & Dell, A. I. The little things that run: a general scaling of invertebrate exploratory speed with body mass. Ecology 98, 2751–2757 (2017).

    Google Scholar 

  46. 46.

    Allesina, S., Alonso, D. & Pascual, M. A general model for food web structure. Science 320, 658–661 (2008).

    CAS  Google Scholar 

  47. 47.

    Levine, S. Several measures of trophic structure applicable to complex food webs. J. Theor. Biol. 83, 195–207 (1980).

    Google Scholar 

  48. 48.

    Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Google Scholar 

  49. 49.

    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: Linear and nonlinear mixed effects models. R package version 3.1-143 (2019).

  50. 50.

    Brose, U. GlobAL daTabasE of traits and food Web Architecture (GATEWAy) version 1.0. iDiv https://doi.org/10.25829/idiv.283-3-756 (2018).

  51. 51.

    Gauzens, B. The temporal dynamics of intertidal pool communities. Zenodo https://doi.org/10.5281/zenodo.3578553 (2020).

Download references

Acknowledgements

B.C.R., U.B. and B.G. acknowledge the support of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig funded by the German Research Foundation (FZT 118). C.V. and V.M. acknowledge the project WarmingWebs PTDC/MAR-EST/2141/2012, the research position granted to C.V., the PhD grant SFRH/BD/109618/2015 awarded to V.M. and the strategic project UID/MAR/04292/2019 granted to MARE and UID/Multi/04326/2019 granted to CCMAR, funded by the Portuguese Foundation for Science and Technology. We thank C. Krause for help with the HPC.

Author information

Affiliations

Authors

Contributions

B.G. and U.B. designed the study. V.M. and C.V. collected the data. B.G. wrote the first draft of the manuscript and performed simulations. All authors contributed to the manuscript.

Corresponding author

Correspondence to Benoit Gauzens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Arnaud Sentis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–8 and Tables 1and 2.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gauzens, B., Rall, B.C., Mendonça, V. et al. Biodiversity of intertidal food webs in response to warming across latitudes. Nat. Clim. Chang. 10, 264–269 (2020). https://doi.org/10.1038/s41558-020-0698-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing