Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sandy coastlines under threat of erosion

Matters Arising to this article was published on 27 October 2020

Abstract

Sandy beaches occupy more than one-third of the global coastline1 and have high socioeconomic value related to recreation, tourism and ecosystem services2. Beaches are the interface between land and ocean, providing coastal protection from marine storms and cyclones3. However the presence of sandy beaches cannot be taken for granted, as they are under constant change, driven by meteorological4,5, geological6 and anthropogenic factors1,7. A substantial proportion of the world’s sandy coastline is already eroding1,7, a situation that could be exacerbated by climate change8,9. Here, we show that ambient trends in shoreline dynamics, combined with coastal recession driven by sea level rise, could result in the near extinction of almost half of the world’s sandy beaches by the end of the century. Moderate GHG emission mitigation could prevent 40% of shoreline retreat. Projected shoreline dynamics are dominated by sea level rise for the majority of sandy beaches, but in certain regions the erosive trend is counteracted by accretive ambient shoreline changes; for example, in the Amazon, East and Southeast Asia and the north tropical Pacific. A substantial proportion of the threatened sandy shorelines are in densely populated areas, underlining the need for the design and implementation of effective adaptive measures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Projected long-term shoreline changes.
Fig. 2: Projected median long-term shoreline change under RCP 8.5 by the year 2100 (dxshore,LT), for the 26 IPCC SREX subregions and the worldwide average.
Fig. 3: Per country percentage of sandy beach coastline projected to experience critical erosion.

Similar content being viewed by others

Data availability

The models and datasets presented are part of the integrated risk assessment tool LISCoAsT (Large scale Integrated Sea-level and Coastal Assessment Tool) developed by the Joint Research Centre of the European Commission. The dataset is available through the LISCoAsT repository of the JRC data collection: http://data.europa.eu/89h/18eb5f19-b916-454f-b2f5-88881931587e.

Code availability

The code that supported the findings of this study is available from the corresponding author upon reasonable request.

References

  1. Luijendijk, A. et al. The state of the world’s beaches. Sci. Rep. 8, 6641 (2018).

    Article  CAS  Google Scholar 

  2. Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Article  Google Scholar 

  3. Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83 (2013).

    Article  CAS  Google Scholar 

  4. Masselink, G. et al. Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe. Geophys. Res. Lett. 43, 2135–2143 (2016).

    Article  Google Scholar 

  5. Barnard, P. L. et al. Coastal vulnerability across the Pacific dominated by El Niño/Southern oscillation. Nat. Geosci. 8, 801–807 (2015).

    Article  CAS  Google Scholar 

  6. Cooper, J. A. G., Green, A. N. & Loureiro, C. Geological constraints on mesoscale coastal barrier behaviour. Glob. Planet. Change 168, 15–34 (2018).

    Article  Google Scholar 

  7. Mentaschi, L., Vousdoukas, M. I., Pekel, J.-F., Voukouvalas, E. & Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 8, 12876 (2018).

    Article  CAS  Google Scholar 

  8. Ranasinghe, R. Assessing climate change impacts on open sandy coasts: a review. Earth Sci. Rev. 160, 320–332 (2016).

    Article  Google Scholar 

  9. Hinkel, J. et al. A global analysis of erosion of sandy beaches and sea-level rise: an application of DIVA. Glob. Planet. Change 111, 150–158 (2013).

    Article  Google Scholar 

  10. Koks, E. E. et al. A global multi-hazard risk analysis of road and railway infrastructure assets. Nat. Commun. 10, 2677 (2019).

    Article  CAS  Google Scholar 

  11. McGranahan, G., Balk, D. & Anderson, B. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 19, 17–37 (2007).

    Article  Google Scholar 

  12. Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS ONE 10, e0118571 (2015).

    Article  CAS  Google Scholar 

  13. Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 8 (2016).

    Google Scholar 

  14. Davenport, J. & Davenport, J. L. The impact of tourism and personal leisure transport on coastal environments: a review. Estuar. Coast. Shelf Sci. 67, 280–292 (2006).

    Article  Google Scholar 

  15. Nerem, R. S. et al. Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proc. Natl Acad. Sci. USA 115, 2022–2025 (2018).

    Article  CAS  Google Scholar 

  16. Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P. & Cooke, R. M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl Acad. Sci. USA 116, 11195–11200 (2019).

  17. Jevrejeva, S., Jackson, L. P., Riva, R. E. M., Grinsted, A. & Moore, J. C. Coastal sea level rise with warming above 2 °C. Proc. Natl Acad. Sci. USA 113, 13342–13347 (2016).

    Article  CAS  Google Scholar 

  18. Bruun, P. Sea level rise as a cause of shore erosion. J. Waterw. Harb. Div. 88, 117–130 (1962).

    Google Scholar 

  19. Anthony, E. J. et al. Linking rapid erosion of the Mekong river delta to human activities. Sci. Rep. 5, 14745 (2015).

    Article  CAS  Google Scholar 

  20. Vousdoukas, M. I. et al. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 9, 2360 (2018).

    Article  CAS  Google Scholar 

  21. Hemer, M. A., Fan, Y., Mori, N., Semedo, A. & Wang, X. L. Projected changes in wave climate from a multi-model ensemble. Nat. Clim. Change 3, 471–476 (2013).

    Article  Google Scholar 

  22. Slott, J. M., Murray, A. B., Ashton, A. D. & Crowley, T. J. Coastline responses to changing storm patterns. Geophys. Res. Lett. 33, https://doi.org/10.1029/2006GL027445 (2006).

  23. Athanasiou, P. et al. Global distribution of nearshore slopes with implications for coastal retreat. Earth Syst. Sci. Data 11, 1515–1529 (2019).

    Article  Google Scholar 

  24. Kriebel, D. L. & Dean, R. G. Convolution method for time dependent beach profile response. J. Waterw. Port Coast. Ocean Eng. 119, 204–226 (1993).

    Article  Google Scholar 

  25. Vousdoukas, M. I. Erosion/accretion patterns and multiple beach cusp systems on a meso-tidal, steeply-sloping beach. Geomorphology 141, 34–46 (2012).

    Article  Google Scholar 

  26. Anderson, T. R., Frazer, L. N. & Fletcher, C. H. Transient and persistent shoreline change from a storm. Geophys. Res. Lett. 37, L08401 (2010).

    Article  Google Scholar 

  27. Erikson, L. H., Hegermiller, C. A., Barnard, P. L., Ruggiero, P. & van Ormondt, M. Projected wave conditions in the Eastern North Pacific under the influence of two CMIP5 climate scenarios. Ocean Model. 96, 171–185 (2015).

    Article  Google Scholar 

  28. Mentaschi, L., Vousdoukas, M. I., Voukouvalas, E., Dosio, A. & Feyen, L. Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns. Geophys. Res. Lett. 44, 2416–2426 (2017).

    Article  Google Scholar 

  29. Small, C. & Nicholls, R. J. A global analysis of human settlement in coastal zones. J. Coast. Res. 19, 584–599 (2003).

    Google Scholar 

  30. Milliman, J. D. Blessed dams or damned dams? Nature 386, 325–327 (1997).

    Article  CAS  Google Scholar 

  31. Ranasinghe, R., Wu, C. S., Conallin, J., Duong, T. M. & Anthony, E. J. Disentangling the relative impacts of climate change and human activities on fluvial sediment supply to the coast by the world’s large rivers: Pearl River Basin, China. Sci. Rep. 9, 9236 (2019).

  32. Brière, C., Janssen, S. K. H., Oost, A. P., Taal, M. & Tonnon, P. K. Usability of the climate-resilient nature-based sand motor pilot, the Netherlands. J. Coast. Conserv. 22, 491–502 (2018).

    Article  Google Scholar 

  33. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

    Article  CAS  Google Scholar 

  34. Hurst, M. D., Rood, D. H., Ellis, M. A., Anderson, R. S. & Dornbusch, U. Recent acceleration in coastal cliff retreat rates on the south coast of Great Britain. Proc. Natl Acad. Sci. USA 113, 13336–13341 (2016).

    Article  CAS  Google Scholar 

  35. Ruggiero, P. Is the intensifying wave climate of the U.S. Pacific Northwest increasing flooding and erosion risk faster than sea-level rise? J. Waterw. Port Coast. Ocean Eng. 139, 88–97 (2013).

    Article  Google Scholar 

  36. Loureiro, C., Ferreira, Ó. & Cooper, J. A. G. Extreme erosion on high-energy embayed beaches: influence of megarips and storm grouping. Geomorphology 139–140, 155–171 (2012).

    Article  Google Scholar 

  37. Kroon, A. et al. Statistical analysis of coastal morphological data sets over seasonal to decadal time scales. Coast. Eng. 55, 581–600 (2008).

    Article  Google Scholar 

  38. Gallop, S. L., Bosserelle, C., Pattiaratchi, C. & Eliot, I. Rock topography causes spatial variation in the wave, current and beach response to sea breeze activity. Mar. Geol. 290, 29–40 (2011).

    Article  Google Scholar 

  39. Vousdoukas, M. I., Velegrakis, A. F. & Plomaritis, T. A. Beachrock occurrence, characteristics, formation mechanisms and impacts. Earth Sci. Rev. 85, 23–46 (2007).

    Article  Google Scholar 

  40. Vousdoukas, M. I., Almeida, L. P. & Ferreira, Ó. Beach erosion and recovery during consecutive storms at a steep-sloping, meso-tidal beach. Earth Surf. Process. Landf. 37, 583–691 (2012).

    Article  Google Scholar 

  41. Ranasinghe, R., Callaghan, D. & Stive, M. J. F. Estimating coastal recession due to sea level rise: beyond the Bruun rule. Clim. Change 110, 561–574 (2012).

    Article  Google Scholar 

  42. Coco, G. et al. Beach response to a sequence of extreme storms. Geomorphology 204, 493–501 (2014).

    Article  Google Scholar 

  43. Hardisty, J. in Sediment Transport and Depositional Processes (Ed. Pye, K.) 216–255 (Blackwell, 1994).

  44. Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

    Article  CAS  Google Scholar 

  45. Haklay, M. & Weber, P. OpenStreetMap: user-generated street maps. IEEE Pervasive Comput. 7, 12–18 (2008).

    Article  Google Scholar 

  46. Boak, E. H. & Turner, I. L. Shoreline definition and detection: a review. J. Coast. Res. 21, 688–703 (2005).

  47. Jackson, L. P. & Jevrejeva, S. A probabilistic approach to 21st century regional sea-level projections using RCP and high-end scenarios. Glob. Planet. Change 146, 179–189 (2016).

    Article  Google Scholar 

  48. Yamazaki, D. et al. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 44, 5844–5853 (2017).

    Article  Google Scholar 

  49. Weatherall, P. et al. A new digital bathymetric model of the world’s oceans. Earth Space Sci. 2, 331–345 (2015).

  50. Hallermeier, R. J. Uses for a calculated limit depth to beach erosion. In Proc. 16th International Conference on Coastal Engineering 1493–1512 (American Society of Civil Engineers, 1978).

  51. Nicholls, R. J., Birkemeier, W. A. & Lee, G.-h Evaluation of depth of closure using data from Duck, NC, USA. Mar. Geol. 148, 179–201 (1998).

    Article  Google Scholar 

  52. Baron, H. M. et al. Incorporating climate change and morphological uncertainty into coastal change hazard assessments. Nat. Hazards 75, 2081–2102 (2015).

    Article  Google Scholar 

  53. Ranasinghe, R., Duong, T. M., Uhlenbrook, S., Roelvink, D. & Stive, M. Climate-change impact assessment for inlet-interrupted coastlines. Nat. Clim. Change 3, 83–87 (2012).

    Article  Google Scholar 

  54. Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M. & Feyen, L. Extreme sea levels on the rise along Europe’s coasts. Earth’s Future https://doi.org/10.1002/2016EF000505 (2017).

  55. Queffeulou, P. & Croizé-Fillon, D. Global Altimeter SWH Dataset (Laboratoire d’Océanographie Spatiale, IFREMER, 2014).

  56. Li, F. Probabilistic Estimation of Dune Erosion and Coastal Zone Risk. PhD thesis, Delft Univ. Technology (2014).

  57. Toimil, A., Losada, I. J., Camus, P. & Díaz-Simal, P. Managing coastal erosion under climate change at the regional scale. Coast. Eng. 128, 106–122 (2017).

    Article  Google Scholar 

  58. Le Cozannet, G. et al. Quantifying uncertainties of sandy shoreline change projections as sea level rises. Sci. Rep. 9, 42 (2019).

    Article  CAS  Google Scholar 

  59. Lentz, E. E. et al. Evaluation of dynamic coastal response to sea-level rise modifies inundation likelihood. Nat. Clim. Change 6, 696–700 (2016).

    Article  Google Scholar 

  60. Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H. & Ward, P. J. A global reanalysis of storm surges and extreme sea levels. Nat. Commun. 7, 11969 (2016).

  61. Coastal Engineering Manual Part II, Ch. 2 (US Army Corps of Engineers, 2002).

  62. Mentaschi, L. et al. Non-stationary extreme value analysis: a simplified approach for earth science applications. Hydrol. Earth Syst. Sci. Discuss. 2016, 1–38 (2016).

    Google Scholar 

  63. Corbane, C. et al. Big earth data analytics on Sentinel-1 and Landsat imagery in support to global human settlements mapping. Big Earth Data 1, 118–144 (2017).

    Article  Google Scholar 

  64. IPCC (eds Field, C. B. et al.) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (Cambridge Univ. Press, 2012).

  65. Antolínez, J. A. A. et al. A multiscale climate emulator for long-term morphodynamics (MUSCLE-morpho). J. Geophys. Res. Oceans 121, 775–791 (2016).

    Article  Google Scholar 

  66. Enríquez, A. R., Marcos, M., Álvarez-Ellacuría, A., Orfila, A. & Gomis, D. Changes in beach shoreline due to sea level rise and waves under climate change scenarios: application to the Balearic Islands (western Mediterranean). Nat. Hazards Earth Syst. Sci. 17, 1075–1089 (2017).

    Article  Google Scholar 

  67. Anderson, D., Ruggiero, P., Antolínez, J. A. A., Méndez, F. J. & Allan, J. A climate index optimized for longshore sediment transport reveals interannual and multidecadal littoral cell rotations. J. Geophys. Res. Earth Surf. 123, 1958–1981 (2018).

    Article  Google Scholar 

  68. Giardino, A. et al. A quantitative assessment of human interventions and climate change on the West African sediment budget. Ocean Coast. Manag. 156, 249–265 (2018).

    Article  Google Scholar 

  69. Vitousek, S., Barnard, P. L., Limber, P., Erikson, L. & Cole, B. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. J. Geophys. Res. Earth Surf. 122, 782–806 (2017).

    Article  Google Scholar 

  70. Wainwright, D. J. et al. Moving from deterministic towards probabilistic coastal hazard and risk assessment: development of a modelling framework and application to Narrabeen Beach, New South Wales, Australia. Coast. Eng. 96, 92–99 (2015).

    Article  Google Scholar 

  71. Ranasinghe, R. & Stive, M. J. F. Rising seas and retreating coastlines. Clim. Change 97, 465 (2009).

    Article  Google Scholar 

  72. Davidson, M. A., Splinter, K. D. & Turner, I. L. A simple equilibrium model for predicting shoreline change. Coast. Eng. 73, 191–202 (2013).

    Article  Google Scholar 

  73. Ozkan-Haller, T. & Brundidge, S. Equilibrium beach profiles for Delaware beaches. J. Waterw. Port Coast. Ocean Eng . 133, 147–160 (2007).

    Article  Google Scholar 

  74. Cooper, J. A. G. & Pilkey, O. H. Sea-level rise and shoreline retreat: time to abandon the Bruun Rule. Glob. Planet. Change 43, 157–171 (2004).

    Article  Google Scholar 

  75. Pilkey, O. H. & Dixon, K. L. The Corps and the Shore (Island Press, 1996).

  76. Pilkey, O. H. et al. The concept of shoreface profile of equilibrium: a critical review. J. Coast. Res. 9, 225–278 (1993).

    Google Scholar 

  77. Holman, R. A., Lalejini, D. M., Edwards, K. & Veeramony, J. A parametric model for barred equilibrium beach profiles. Coast. Eng. 90, 85–94 (2014).

    Article  Google Scholar 

  78. Coco, G. & Murray, A. B. Patterns in the sand: from forcing templates to self-organization. Geomorphology 91, 271–290 (2007).

    Article  Google Scholar 

  79. Vousdoukas, M. I. Erosion/accretion and multiple beach cusp systems on a meso-tidal, steeply-sloping beach. Geomorphology 141–142, 34–46 (2012).

    Article  Google Scholar 

  80. Wang, Z. & Dean, R. G. in Coastal Sediments ‘07 (eds Kraus, N. C. & Rosati, J. D.) 626–632 (American Society of Civil Engineers, 2007).

  81. Dai, Z.-J., Du, J.-z, Li, C.-C. & Chen, Z.-S. The configuration of equilibrium beach profile in South China. Geomorphology 86, 441–454 (2007).

    Article  Google Scholar 

  82. Romanczyk, W., Boczar-Karakiewicz, B. & Bona, J. L. Extended equilibrium beach profiles. Coast. Eng. 52, 727–744 (2005).

    Article  Google Scholar 

  83. Anderson, T. R., Fletcher, C. H., Barbee, M. M., Frazer, L. N. & Romine, B. M. Doubling of coastal erosion under rising sea level by mid-century in Hawaii. Nat. Hazards 78, 75–103 (2015).

    Article  Google Scholar 

  84. Bray, M. & Hooke, J. Prediction of soft-cliff retreat with accelerating sea-level rise. J. Coast. Res. 13, 453–467 (1997).

    Google Scholar 

  85. Pilkey, O. H. & Cooper, J. A. G. Society and sea level rise. Science 303, 1781 (2004).

    Article  Google Scholar 

  86. Splinter, K. D., Carley, J. T., Golshani, A. & Tomlinson, R. A relationship to describe the cumulative impact of storm clusters on beach erosion. Coast. Eng. 83, 49–55 (2014).

    Article  Google Scholar 

  87. Vousdoukas, M. I., Ferreira, O., Almeida, L. P. & Pacheco, A. Toward reliable storm-hazard forecasts: XBeach calibration and its potential application in an operational early-warning system. Ocean Dyn. 62, 1001–1015 (2012).

    Article  Google Scholar 

  88. Roelvink, D. et al. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 56, 1133–1152 (2009).

    Article  Google Scholar 

  89. Broekema, Y. B. et al. Observations and modelling of nearshore sediment sorting processes along a barred beach profile. Coast. Eng. 118, 50–62 (2016).

    Article  Google Scholar 

  90. de Winter, R. C. & Ruessink, B. G. Sensitivity analysis of climate change impacts on dune erosion: case study for the Dutch Holland coast. Clim. Change 141, 685–701 (2017).

    Article  Google Scholar 

  91. Karunarathna, H., Brown, J., Chatzirodou, A., Dissanayake, P. & Wisse, P. Multi-timescale morphological modelling of a dune-fronted sandy beach. Coast. Eng. 136, 161–171 (2018).

    Article  Google Scholar 

  92. Passeri, D. L., Bilskie, M. V., Plant, N. G., Long, J. W. & Hagen, S. C. Dynamic modeling of barrier island response to hurricane storm surge under future sea level rise. Clim. Change 149, 413–425 (2018).

    Article  Google Scholar 

  93. Vousdoukas, M. I. et al. Proc. 11th International Coastal Symposium (Coastal Education & Research Foundation, Inc., 2011).

  94. Callaghan, D. P., Nielsen, P., Short, A. D. & Ranasinghe, R. Statistical simulation of wave climate and extreme beach erosion. Coast. Eng. 55, 375–390 (2008).

    Article  Google Scholar 

  95. Ferreira, Ó., Garcia, T., Matias, A., Taborda, R. & Dias, J. A. An integrated method for the determination of set-back lines for coastal erosion hazards on sandy shores. Continent. Shelf Res. 26, 1030–1044 (2006).

    Article  Google Scholar 

  96. Mull, J. & Ruggiero, P. Estimating storm-induced dune erosion and overtopping along U.S. West Coast beaches. J. Coast. Res. 30, 1173–1187 (2014).

  97. Ferreira, Ó. Storm groups versus extreme single storms: predicted erosion and management consequences. J. Coast. Res. 42, 155–161 (2005).

    Google Scholar 

  98. Dissanayake, P., Brown, J. & Karunarathna, H. Impacts of storm chronology on the morphological changes of the formby beach and dune system, UK. Nat. Hazards Earth Syst. Sci. 3, 2565–2597 (2015).

    Article  Google Scholar 

  99. Hackney, C., Darby, S. E. & Leyland, J. Modelling the response of soft cliffs to climate change: a statistical, process-response model using accumulated excess energy. Geomorphology 187, 108–121 (2013).

    Article  Google Scholar 

  100. Yates, M. L., Guza, R. T. & O’Reilly, W. C. Equilibrium shoreline response: observations and modeling. J. Geophys. Res. 114, C09014 (2009).

    Article  Google Scholar 

  101. Pontee, N. Defining coastal squeeze: a discussion. Ocean Coast. Manag. 84, 204–207 (2013).

    Article  Google Scholar 

  102. Doody, J. P. Coastal squeeze and managed realignment in southeast England, does it tell us anything about the future? Ocean Coast. Manag. 79, 34–41 (2013).

    Article  Google Scholar 

  103. Monioudi, I. N. et al. Assessment of island beach erosion due to sea level rise: the case of the Aegean archipelago (Eastern Mediterranean). Nat. Hazards Earth Syst. Sci. 17, 449–466 (2017).

    Article  Google Scholar 

  104. Rosen, T. & Xu, Y. J. Recent decadal growth of the Atchafalaya river delta complex: effects of variable riverine sediment input and vegetation succession. Geomorphology 194, 108–120 (2013).

    Article  Google Scholar 

  105. Peduzzi, P. et al. Global trends in tropical cyclone risk. Nat. Clim. Change 2, 289–294 (2012).

    Article  Google Scholar 

  106. Travis, J. Scientists fears come true as hurricane floods New Orleans. Science 309, 1656 (2005).

    Article  CAS  Google Scholar 

  107. Monteiro, M. C., Pereira, L. C. C. & de Oliveira, S. M. O. Morphodynamic changes of a macrotidal sand beach in the Brazilian Amazon Coast (Ajuruteua-Pará). J. Coast. Res. SI56, 103–107 (2009).

  108. Salomon, J.-N. L’accrétion littorale sur la côte Ouest de Madagascar. Physio-Géo 3, 35–59 (2009).

  109. Taft, L. & Evers, M. A review of current and possible future human–water dynamics in myanmar’s river basins. Hydrol. Earth Syst. Sci. 20, 4913–4928 (2016).

    Article  Google Scholar 

  110. Marfai, M. A. & King, L. Monitoring land subsidence in Semarang, Indonesia. Environ. Geol. 53, 651–659 (2007).

    Article  Google Scholar 

  111. Rodolfo, K. S. & Siringan, F. P. Global sea-level rise is recognised, but flooding from anthropogenic land subsidence is ignored around northern Manila Bay, Philippines. Disasters 30, 118–139 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

R.R. is supported by the AXA Research fund and the Deltares Strategic Research Programme ‘Coastal and Offshore Engineering’. P.A. is supported by the EU Horizon 2020 Programme for Research and Innovation under grant no. 776613 (EUCP: European Climate Prediction system). T.P. was funded by the research group RNM-328 of the Andalusian Research Plan (PAI) and the Portuguese Science and Technology Foundation (FCT) through grant no. UID/MAR/00350/2013 attributed to CIMA of the University of Algarve. The authors are grateful to A. Giardino and A. van Dongeren for providing helpful comments on the manuscript and the methodology, and E. Voukouvalas for contributing to the generation of the storm surge dataset.

Author information

Authors and Affiliations

Authors

Contributions

M.I.V, R.R. and L.F. jointly conceived the study. M.I.V. and L.M. produced the storm surge and wave projections. L.M. produced the ambient shoreline change data and developed the extreme value statistical analysis methodology. M.I.V. and T.A.P. produced the storm erosion and SLR retreat projections. P.A. produced the global beach slope dataset. A.L. produced the global sandy beach presence dataset. M.I.V. analysed the data and prepared the manuscript, with all authors discussing results and implications and commenting on the manuscript at all stages.

Corresponding author

Correspondence to Michalis I. Vousdoukas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Patrick Barnard, Mark Davidson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Geographical regions considered in the present analysis.

Geographical regions considered in the present analysis, based on the IPCC SREX report and limited to those that contain ice-free sandy coastlines.

Extended Data Fig. 2 Projected long-term shoreline change due to SLR-driven retreat (R) alone, by the year 2050 and 2100 under RCP4.5 and RCP8.5.

Projected long-term shoreline change due to SLR-driven retreat (R) alone, by the year 2050 (a,c) and 2100 (b,d) under RCP4.5 (a-b) and RCP8.5 (c-d). Values represent the median change and positive/negative values express accretion/erosion in m, relative to 2010. The global average median change is shown in the inset text for each case, along with the 5th-95th percentile range.

Extended Data Fig. 3 Projected long-term shoreline change driven due to the ambient shoreline change rate (AC) alone, by the year 2050 and 2100.

Projected long-term shoreline change driven due to the ambient shoreline change rate (AC) alone, by the year 2050 (a) and 2100 (b). Values represent the median change and positive/negative values express accretion/erosion in m, relative to 2010. The global average median change is shown in the inset text for each case, along with the 5th-95th percentile range.

Extended Data Fig. 4 Projected change in 100-year episodic beach erosion for the year 2050 and 2100 under RCP4.5 and RCP8.5.

Projected change in 100-year episodic beach erosion for the year 2050 (a,c) and 2100 (b,d) under RCP4.5 (a-b) and RCP8.5 (c-d). Values represent the median change and positive/negative values express less/more erosion (m), relative to 2010. The global average median change is shown in the inset text for each case, along with the 5th-95th percentile range.

Extended Data Fig. 5 Projected median long-term shoreline change under RCP4.5 by the year 2050 (dxshore,LT), for the 26 IPCC SREX sub-regions and the worldwide average.

Projected median long-term shoreline change under RCP4.5 by the year 2050 (dxshore,LT), for the 26 IPCC SREX sub-regions and the worldwide average (horizontal bar plot; positive/negative values express accretion/erosion in m). Shoreline change is considered to be the result of SLR retreat (R) and ambient shoreline change trends (AC). Pie plots show the relative contributions of R and AC to the projected median dxshore,LT, with transparent patches expressing accretive trends. Vertical bar plots show the relative contributions of R and AC, as well as that of RCPs, to the total uncertainty in projected median dxshore,LT.

Extended Data Fig. 6 Projected median long-term shoreline change under RCP8.5 by the year 2050 (dxshore,LT), for the 26 IPCC SREX sub-regions and the worldwide average.

Projected median long-term shoreline change under RCP8.5 by the year 2050 (dxshore,LT), for the 26 IPCC SREX sub-regions and the worldwide average (horizontal bar plot; positive/negative values express accretion/erosion in m). Shoreline change is considered to be the result of SLR retreat (R) and ambient shoreline change trends (AC). Pie plots show the relative contributions of R and AC to the projected median dxshore,LT, with transparent patches expressing accretive trends. Vertical bar plots show the relative contributions of R and AC, as well as that of RCPs, to the total uncertainty in projected median dxshore,LT.

Extended Data Fig. 7 Projected median long-term shoreline change under RCP4.5 by the year 2100 (dxshore,LT), for the 26 IPCC SREX sub-regions and the worldwide average.

Projected median long-term shoreline change under RCP4.5 by the year 2100 (dxshore,LT), for the 26 IPCC SREX sub-regions and the worldwide average (horizontal bar plot; positive/negative values express accretion/erosion in m). Shoreline change is considered to be the result of SLR retreat (R) and ambient shoreline change trends (AC). Pie plots show the relative contributions of R and AC to the projected median dxshore,LT, with transparent patches expressing accretive trends. Vertical bar plots show the relative contributions of R and AC, as well as that of RCPs, to the total uncertainty in projected median dxshore,LT.

Extended Data Fig. 8 Percentage length of sandy beach shoreline that is projected to retreat by more than 50, 100 and 200 m per IPCC SREX sub-region.

Bar plots showing, per IPCC SREX sub-region, the percentage length of sandy beach shoreline that is projected to retreat by more than 50 (blue), 100 (yellow) and 200 m (red), by 2050 (a,c) and 2100 (b,d), under RCP4.5 (a-b) and RCP8.5 (c-d) relative to 2010. Transparent colour patches indicate the 5th-95th quantile range and solid rectangles show the median value. For the region abbreviations, please see Extended Data Fig. 1.

Extended Data Fig. 9 Length of sandy beach shoreline that is projected to retreat by more than 50, 100 and 200 m per IPCC SREX sub-region.

Bar plots showing, per IPCC SREX sub-region, the length (in km) of sandy beach shoreline that is projected to retreat by more than 50 (blue), 100 (yellow) and 200 m (red), by 2050 (a,c) and 2100 (b,d), under RCP4.5 (a-b) and RCP8.5 (c-d) relative to 2010. Transparent colour patches indicate the 5th-95th quantile range and solid rectangles show the median value. For the region abbreviations, please see Supplementary Figs. 2 and 5.

Extended Data Fig. 10 Per country length of sandy beach shoreline that is projected to retreat by more than 100 m.

Per country length of sandy beach coastline which is projected to retreat by more than 100 m by 2050 (a,c) and 2100 (b,d), under RCP4.5 (a-b) and RCP8.5 (c-d). Values are based on the median long-term shoreline change, relative to 2010.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Tables 1–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vousdoukas, M.I., Ranasinghe, R., Mentaschi, L. et al. Sandy coastlines under threat of erosion. Nat. Clim. Chang. 10, 260–263 (2020). https://doi.org/10.1038/s41558-020-0697-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-020-0697-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing