Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ocean acidification may slow the pace of tropicalization of temperate fish communities

Abstract

Poleward range extensions by warm-adapted sea urchins are switching temperate marine ecosystems from kelp-dominated to barren-dominated systems that favour the establishment of range-extending tropical fishes. Yet, such tropicalization may be buffered by ocean acidification, which reduces urchin grazing performance and the urchin barrens that tropical range-extending fishes prefer. Using ecosystems experiencing natural warming and acidification, we show that ocean acidification could buffer warming-facilitated tropicalization by reducing urchin populations (by 87%) and inhibiting the formation of barrens. This buffering effect of CO2 enrichment was observed at natural CO2 vents that are associated with a shift from a barren-dominated to a turf-dominated state, which we found is less favourable to tropical fishes. Together, these observations suggest that ocean acidification may buffer the tropicalization effect of ocean warming against urchin barren formation via multiple processes (fewer urchins and barrens) and consequently slow the increasing rate of tropicalization of temperate fish communities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic depicting the potential direct, indirect, negative and positive effects of ocean warming and ocean acidification on sea urchin-induced habitat phase shifts and the cascading effects on species richness of range-extending tropical fishes in temperate ecosystems.
Fig. 2: Structure of fish assemblages across different coastal habitats, showing urchin barrens as a key habitat for tropical and temperate fish assemblages while kelp habitat is avoided by tropical fishes.
Fig. 3: CAP ordination based on Bray–Curtis distance, showing the correlation between trophic functional groups of range-extending tropical and local temperate fish assemblages, respectively, with temperate reef habitats of south-eastern Australia.
Fig. 4: Linear regressions showing the relationships between seawater pH, sea urchin density and barren size.

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article  Google Scholar 

  2. Pecl, G. T. et al. Biodiversity redistribution under climate: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article  Google Scholar 

  3. Ling, S. D. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia 156, 883–894 (2008).

    Article  CAS  Google Scholar 

  4. Feary, D. A. et al. Latitudinal shift in coral reef fishes: why some species do other do not shift. Fish. Fish. (Oxf.) 15, 593–615 (2013).

    Article  Google Scholar 

  5. Nakamura, Y., Feary, D. A., Kanda, M. & Yamaoka, K. Tropical fishes dominate temperate reef fish communities within western Japan. PLoS ONE 8, e81107 (2013).

    Article  Google Scholar 

  6. Peers, M. J. L., Wehtje, M., Thornton, D. H. & Murray, D. L. Prey switching as a means of enhancing persistence in predators at the trailing southern edge. Glob. Change Biol. 20, 1126–1135 (2014).

    Article  Google Scholar 

  7. Verges, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. USA 113, 13791–13796 (2016).

    Article  CAS  Google Scholar 

  8. Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J. & Haddo, M. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Glob. Change Biol. 15, 719–731 (2009).

    Article  Google Scholar 

  9. Johnson, C. R., Ling, S. D., Ross, J., Shepherd, S. & Miller, K. Establishment of the Long-Spined Sea Urchin (Centrostephanus rodgersii) in Tasmania: First Assessment of Potential Threats to Fisheries. FRDC Final Report, Project No. 2001/044 (School of Zoology & Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, 2005).

  10. Beck, H. J., Feary, D. A., Nakamura, Y. & Booth, D. J. Temperate macroalgae impacts tropical fish recruitment at forefront of range expansion. Coral Reefs 36, 639–651 (2017).

    Article  Google Scholar 

  11. Nagelkerken, I. & Connell, S. D. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc. Natl Acad. Sci. USA 112, 13272–13277 (2015).

    Article  CAS  Google Scholar 

  12. Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    Article  CAS  Google Scholar 

  13. Connell, S. D. et al. The duality of ocean acidification as a resource and a stressor. Ecology 99, 1005–1010 (2018).

    Article  Google Scholar 

  14. Nagelkerken, I., Goldenberg, S. U., Ferreira, C. M., Russell, B. D. & Connell, S. D. Species interactions drive fish biodiversity loss in a high-CO2 world. Curr. Biol. 27, 2177–2184 (2017).

    Article  CAS  Google Scholar 

  15. Sunday, J. M. et al. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Change 7, 81–85 (2017).

    Article  CAS  Google Scholar 

  16. Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I. & Russell, B. D. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Proc. R. Soc. B 368, 20120442 (2013).

    Google Scholar 

  17. Russell, B. D. et al. Future seagrass beds: can increased productivity lead to increased carbon storage? Mar. Pollut. Bull. 73, 463–469 (2013).

    Article  CAS  Google Scholar 

  18. Palacios, S. L. & Zimmerman, R. C. Response of ellgrass Zostera marina to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Mar. Ecol. Prog. Ser. 344, 1–13 (2007).

    Article  Google Scholar 

  19. Hepburn, C. D. et al. Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Glob. Change Biol. 17, 2488–2497 (2011).

    Article  Google Scholar 

  20. Linares, C. et al. Persistent natural acidification drives major distribution shifts in marine benthic ecosystems. Proc. R. Soc. B Biol. Sci. 282, 20150587 (2015).

    Article  CAS  Google Scholar 

  21. Russell, B. D., Thompson, J. A. I., Falkenberg, L. J. & Connell, S. D. Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats. Glob. Change Biol. 15, 2153–2162 (2009).

    Article  Google Scholar 

  22. Connell, S. D. & Russell, B. D. The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. R. Soc. B Biol. Sci. 277, 1409–1415 (2010).

    Article  Google Scholar 

  23. Diaz-Pulido, G., Gouezo, M., Tilbrook, B., Dove, S. & Anthony, K. R. N. High CO2 enhances the competitive strength of seaweeds over corals. Ecol. Lett. 14, 156–162 (2011).

    Article  Google Scholar 

  24. Johnson, M. D., Comeau, S., Lantz, C. A. & Smith, J. E. Complex and interactive effects of ocean acidification and temperature on epilithic and endolithic coral-reef turf algal assemblages. Coral Reefs 36, 1059–1070 (2017).

    Article  Google Scholar 

  25. Kroeker, K. J., Kordas, R. L. & Harley, D. G. Embracing interactions in ocean acidification research: confronting multiple stressor scenarios and context dependence. Biol. Lett. 13, 20160802 (2017).

    Article  Google Scholar 

  26. Goldenberg, S. U., Nagelkerken, I., Ferreira, C. M., Ullah, H. & Connell, S. D. Boosted food web productivity through ocean acidification collapses under warming. Glob. Change Biol. 23, 4177–4184 (2017).

    Article  Google Scholar 

  27. Wernberg, T., Smale, D. A. & Thomsen, M. S. A decade of climate change experiments on marine organisms: procedures, patterns and problems. Glob. Change Biol. 18, 1491–1498 (2012).

    Article  Google Scholar 

  28. Kroeker, K. J., Micheli, F., Gambi, M. C. & Martz, T. R. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc. Natl Acad. Sci. USA 108, 14515–14520 (2011).

    Article  CAS  Google Scholar 

  29. Goldenberg, S. U. et al. Ecological complexity buffers the impacts of future climate on marine consumers. Nat. Clim. Change 8, 229–233 (2018).

    Article  Google Scholar 

  30. Connell, S. D. & Ghedini, G. Resisting regime-shifts: the stabilising effect of compensatory processes. Trends Ecol. Evol. 30, 513–515 (2015).

    Article  Google Scholar 

  31. Widdicombe, S., Dupont, S. & Thorndyke, M. Laboratory Experiments and Benthic Mesocosm Studies. Guide for Best Practices in Ocean Acidification Research and Data Reporting (EPOCA, 2008).

  32. Hofmann, G. E. et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6, e28983 (2011).

    Article  CAS  Google Scholar 

  33. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    Article  CAS  Google Scholar 

  34. Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).

    Article  CAS  Google Scholar 

  35. Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    Article  Google Scholar 

  36. Ling, S. D. et al. Global regime shift dynamics of catastrophic sea urchin overgrazing. Phil. Trans. R. Soc. B 370, 20130269 (2015).

    Article  Google Scholar 

  37. Calosi, P. et al. Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid–base and ion-regulatory abilities. Mar. Pollut. Bull. 73, 470–484 (2013).

    Article  CAS  Google Scholar 

  38. Booth, D. J., Figueira, W. F., Gregson, M. A., Brown, L. & Beretta, G. Occurrence of tropical fishes in temperate southeastern Australia: role of the East Australian Current. Estuar. Coast. Shelf Sci. 72, 102–114 (2007).

    Article  Google Scholar 

  39. Nagelkerken, I., Russell, B. D., Gillanders, B. M. & Connell, S. D. Ocean acidification alters fish populations indirectly through habitat modification. Nat. Clim. Change 6, 89–93 (2016).

    Article  CAS  Google Scholar 

  40. Hall-Spencer, J. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).

    Article  CAS  Google Scholar 

  41. Kroeker, K., Gambi, M. C. & Micheli, F. Community dynamics and ecosystem simplification in a high-CO2 ocean. Proc. Natl Acad. Sci. USA 110, 12721–12726 (2013).

    Article  CAS  Google Scholar 

  42. Enochs, I. C. et al. Shift from coral to macroalgae dominance on volcanically acidified reef. Nat. Clim. Change 5, 1083–1088 (2015).

    Article  CAS  Google Scholar 

  43. Suding, K. N. & Hobbs, R. J. Threshold models in restoration and conservation: a developing framework. Trends Ecol. Evol. 24, 271–279 (2009).

    Article  Google Scholar 

  44. Perry, A. L., Low, O. L., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

    Article  CAS  Google Scholar 

  45. Steneck, R. S. Herbivory on coral reefs: a synthesis. In Proc. 6th International Coral Reef Symposium. Vol. 1, 37–49 (1988).

  46. Purcell, S. W. & Bellwood, D. R. A functional analysis of food procurement in two surgeonfish species, Acanthurus nigrofuscus and Ctenochaetus striatus (Acanthuridae). Environ. Biol. Fishes 37, 139–159 (1993).

    Article  Google Scholar 

  47. Curley, B. G., Gillanders, B. M. & Kingsford, M. J. Spatial and habitat related patterns of temperate reef fish assemblages: implications for the design of marine protected areas. Mar. Freshw. Res. 53, 1197–1210 (2002).

    Article  Google Scholar 

  48. Coen, L. D., Luckenbach, M. W. & Breitburg, D. L. The role of oyster reef as essential fish habitat: a review of current knowledge and some new perspectives. Am. Fish. Soc. Symp. 22, 438–454 (1999).

    Google Scholar 

  49. Lenihan, H. S. et al. Cascading of habitat degradation: oyster reefs invaded by refugee fishes escaping stress. Ecol. Appl. 11, 764–782 (2001).

    Article  Google Scholar 

  50. Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).

    Article  CAS  Google Scholar 

  51. Thomas, Y., Cassou, C., Gernez, P. & Pouvreau, S. Oysters as sentinels of climatic variability and climatic change in coastal ecosystems. Environ. Res. Lett. 13, 104009 (2018).

    Article  Google Scholar 

  52. Alleway, H. K. & Connell, S. D. Loss of an ecological baseline through the eradication of oyster reefs from coastal ecosystems and human memory. Conserv. Biol. 29, 795–804 (2015).

    Article  Google Scholar 

  53. Filbee-Dexter, K. & Wernberg, T. Rise of turfs: a new battlefront for globally declining kelp forests. BioScience 168, 64–76 (2018).

    Article  Google Scholar 

  54. O’Brien, J. M. & Scheibling, R. E. Turf wars: competition between foundation and turf-forming species on temperate and tropical reefs and its role in regime shifts. Mar. Ecol. Prog. Ser. 599, 1–17 (2018).

    Article  Google Scholar 

  55. Vergés, A. et al. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281, 20140846 (2014).

    Article  Google Scholar 

  56. Bulleri, F., Bruno, J. F., Silliman, B. R. & Stachowicz, J. J. Facilitation and the niche: implications for coexistence, range shifts and ecosystem functioning. Funct. Ecol. 30, 70–78 (2016).

    Article  Google Scholar 

  57. Smith, S. M., Fox, R. J., Booth, D. J. & Donelson, J. M. ‘Stick with your kind, or hang with locals?’ Implications of shoaling strategy for tropical reef fish on a range-expansion frontline. Glob. Change Biol. 24, 1663–1672 (2018).

    Article  Google Scholar 

  58. Kingsbury, K. M., Gillanders, B. M., Booth, D. J., Coni, E. O. C. & Nagelkerken, I. Range-extending coral reef fishes trade-off growth for maintenance of body condition in cooler waters. Sci. Total Environ. 703, 134598 (2019).

    Article  Google Scholar 

  59. Kingsbury, K. M., Gillanders, B. M., Booth, D. J. & Nagelkerken, I. Trophic niche segregation allows range-extending coral reef fishes to co-exist with temperate species under climate change. Glob. Change Biol. 26, 721–733 (2020).

    Article  Google Scholar 

  60. Foo, S. A., Dworjanyn, S. A., Poore, A. G. B. & Byrne, M. Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: performance of early embryos. PLoS ONE 7, e42497 (2012).

    Article  CAS  Google Scholar 

  61. Kelly, M. W., Padilla-Gamino, J. & Hofmann, G. E. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrus purpuratus. Glob. Change Biol. 19, 2536–2546 (2013).

    Article  Google Scholar 

  62. Uthicke, S. et al. Little evidence of adaptation potential to ocean acidification at a CO2 vent. Ecol. Evol. 9, 10004–10016 (2019).

    Article  Google Scholar 

  63. Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).

    Article  CAS  Google Scholar 

  64. Siikayuopio, A. I., Mortesen, A., Dale, T. & Foss, A. Effects of carbon dioxide exposure on feed intake and gonad growth in green sea urchin, Stringylicentritus droebachiensis. Aquaculture 266, 97–101 (2007).

    Article  Google Scholar 

  65. Dworjanyn, S. A. & Byrne, M. Impacts of ocean acidification on sea urchin growth across the juvenile to mature adult life-stage transition is mitigated by warming. Proc. R. Soc. B Biol. Sci. 285, 20172684 (2018).

    Article  Google Scholar 

  66. Miles, H., Widdicombe, S., Spicer, J. I. & Hall-Spencer, J. Effects of anthropogenic seawater acidification on acid–base balance in the sea urchin Psammechinus miliaris. Mar. Pollut. Bull. 54, 89–96 (2007).

    Article  CAS  Google Scholar 

  67. Spicer, J. I., Widdicombe, S., Needham, H. R. & Berge, J. A. Impact of CO2-acidified seawater on the extracellular acid–base balance of the northern sea urchin Strongylocentrotus dröebachiensis. J. Exp. Mar. Biol. Ecol. 407, 19–25 (2011).

    Article  CAS  Google Scholar 

  68. Uthicke, S. et al. Echinometra sea urchins acclimatized to elevated pCO2 at volcanic vents outperform those under present-day pCO2 conditions. Glob. Change Biol. 22, 2451–2461 (2016).

    Article  Google Scholar 

  69. Wernberg, T. et al. Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecol. Lett. 13, 685–694 (2010).

    Article  Google Scholar 

  70. Simonson, E. J., Metaxas, A. & Scheibling, R. E. Kelp in hot water: effects of warming seawater temperature on kelp quality as a food source and settlement substrate. Mar. Ecol. Prog. Ser. 537, 105–119 (2015).

    Article  CAS  Google Scholar 

  71. Ross, P. M., Parker, L. & Byrne, M. Transgenerational responses of molluscs and echinoderms to changing ocean conditions. ICES J. Mar. Sci. 73, 537–549 (2016).

    Article  Google Scholar 

  72. Wong, J. M., Johnson, K. M., Kelly, M. W. & Hofmann, G. E. Transcriptomics reveals transgenerational effects in purple sea urchin embryos: adult acclimation to upwelling conditions alters the response of their progeny to differential pCO2 levels. Mol. Ecol. 27, 1120–1137 (2018).

    Article  CAS  Google Scholar 

  73. Clark, M. S. et al. Molecular mechanisms underpinning transgenerational plasticity in the green sea urchin Psammechinus miliaris. Sci. Rep. 9, 952 (2019).

    Article  Google Scholar 

  74. Ghedini, G., Russell, B. D. & Connell, S. D. Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances. Ecol. Lett. 18, 182–187 (2015).

    Article  Google Scholar 

  75. Munday, P. L., Rummer, J. L. & Baumann, H. Adaptation and evolutionary responses to high CO2. Fish. Physiol. 37, 369–395 (2019).

    Article  Google Scholar 

  76. Miller, G. M., Watson, S. A., Donelson, J. M., McCormick, M. I. & Munday, P. L. Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nat. Clim. Change 2, 858–861 (2012).

    Article  CAS  Google Scholar 

  77. Allan, B. J. M., Miller, G. M., McCormick, M. I., Domenici, P. & Munday, P. L. Parental effects improve escape performance of juvenile reef fish in a high-CO2 world. Proc. R. Soc. B Biol. Sci. 281, 20132179 (2014).

    Article  Google Scholar 

  78. Welch, M., Watson, S., Welsh, J. Q., McCormick, M. I. & Munday, P. L. Effect of elevated CO2 on fish behaviour undiminished by transgenerational acclimation. Nat. Clim. Change 4, 1086–1089 (2014).

    Article  CAS  Google Scholar 

  79. Rummer, J. L. & Munday, P. L. Climate change and the evolution of reef fishes: past and future. Fish. Fish. (Oxf.) 18, 22–39 (2017).

    Article  Google Scholar 

  80. Connell, S. D. & Irving, A. D. Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia. J. Biogeogr. 35, 1608–1621 (2008).

    Article  Google Scholar 

  81. Pecorino, D., Lamare, M. D. & Barker, M. F. Growth, morphometrics and size structure of the Diamatidae sea urchin Centrostephanus rodgersii in northern New Zealand. Mar. Freshw. Res. 63, 624–634 (2012).

    Article  Google Scholar 

  82. Brinkman, T. J. & Smith, A. M. E. Effects of climate change on crustose coralline algae at a temperate vent site, White Island, New Zealand. Mar. Freshw. Res. 66, 360–370 (2015).

    Article  Google Scholar 

  83. Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 596, 82–90 (2017).

    Article  Google Scholar 

  84. Booth, D. J., Beretta, G. A., Brown, L. & Figueira, W. F. Predicting success of range-expanding coral reef fish in temperate habitats using fish in temperature–abundance relationships. Front. Mar. Sci. 5, 31 (2018).

    Article  Google Scholar 

  85. Ridgeway, K. R. Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys. Res. Lett. 34, L13613 (2007).

    Google Scholar 

  86. Hobday, A. J. & Pecl, G. T. Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev. Fish Biol. Fish. 24, 415–425 (2013).

    Article  Google Scholar 

  87. Figueira, W. F. & Booth, D. J. Increasing ocean temperatures allow tropical fishes to survive overwinter in temperate waters. Glob. Change Biol. 16, 506–516 (2010).

    Article  Google Scholar 

  88. McLeod, I. et al. Habitat value of Sydney rock oyster (Saccostrea glomerata) reefs on soft sediments. Mar. Freshw. Res. 71, 771–781 (2019).

    Article  Google Scholar 

  89. Gillies, C. L. et al. Australian shellfish ecosystems: past distribution, current status and future direction. PLoS ONE 13, e0190914 (2018).

    Article  Google Scholar 

  90. Minte-Vera, C. V., Moura, R. L. & Francini-Filho, R. B. Nested sampling: an improved visual-census technique for studying reef fish assemblages. Mar. Ecol. Prog. Ser. 367, 283–293 (2008).

    Article  Google Scholar 

  91. Fulton, C. J., Noble, M. N., Radford, B., Gallen, C. & Harasti, D. Microhabitat selectivity underpins regional indicators of fish abundance and replenishment. Ecol. Indic. 70, 222–231 (2016).

    Article  Google Scholar 

  92. Choat, J. H. & Clements, K. D. Diet in Odacid and Aplodactylid fishes from Australia and New Zealand. Aust. J. Mar. Freshw. Res. 43, 1451–1459 (1992).

    Article  Google Scholar 

  93. Clements, K. D. & Choat, J. H. Comparison of herbivory in the closely-related marine fish genera Girella and Kyphosus. Mar. Biol. 127, 579–586 (1997).

    Article  Google Scholar 

  94. Ceccarelli, D. M. Modification of benthic communities by territorial damselfish: a multi-species comparison. Coral Reefs 26, 853–866 (2007).

    Article  Google Scholar 

  95. Zarco-Perello, S., Wemberg, T., Langlois, T. J. & Vanderklift, M. A. Tropicalization strengthens consumer pressure on habitat-forming seaweeds. Sci. Rep. 7, 820 (2017).

    Article  Google Scholar 

  96. Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).

    Article  Google Scholar 

  97. Paliy, O. & Shankar, V. Application of multivariate statistical techniques in microbial ecology. Mol. Ecol. 25, 1032–1057 (2016).

    Article  CAS  Google Scholar 

  98. Hemingson, C. R. & Bellwood, D. R. Biogeographic patterns in major marine realms: function not taxonomy unites fish assemblages in reef, seagrass and mangrove systems. Ecography 41, 174–182 (2018).

    Article  Google Scholar 

  99. McClanahan, T. R. & Kaunda-Arara, B. Fishery recovery in a coral-reef marine park and its effect on the adjacent fishery. Conserv. Biol. 10, 1187–1199 (1996).

    Article  Google Scholar 

  100. Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).

    Google Scholar 

  101. Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).

    Article  Google Scholar 

  102. Johnson, C. R. et al. Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol. 400, 17–32 (2011).

    Article  Google Scholar 

  103. Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009).

  104. Jax, K. Thresholds, tipping points and limits. In OpenNESS Ecosystem Services Reference Book (eds Potschin, M. & Jax, K.) (2016).

Download references

Acknowledgements

We thank K. Kingsbury, M. Sasaki and M. Krutz for logistic support in the field. This project was funded by Australian Research Council (ARC) Discovery Project DP170101722 to I.N. and D.J.B. Additional financial support was provided by an ARC Future Fellowship to I.N. (grant number FT120100183), an ARC Discovery Project to S.D.C. (grant number DP150104263) and a grant from the Environment Institute (University of Adelaide).

Author information

Authors and Affiliations

Authors

Contributions

E.O.C.C., I.N., D.J.B. and S.D.C. conceived of and designed the study. E.O.C.C. and C.M.F. collected the data. E.O.C.C. analysed the data. E.O.C.C., I.N., D.J.B. and S.D.C. wrote the article.

Corresponding author

Correspondence to Ivan Nagelkerken.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Cristina Linares and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Conceptual models of hysteresis under different climate change stressors.

Regime shifts from kelp forests (green solid lines) to alternative turf and barren-dominated states (orange and pink solid lines) and the occurrence of hysteresis under different climate change scenarios: (a) ocean warming12,101, (b) ocean acidification16, (c) urchin overgrazing3,102, and (d) all three stressors combined (present study). When the stressors are strong enough, and ecosystem state 1 passes beyond the tipping point (T1), a discontinuous critical transition occurs from an unstable equilibrium (dashed line) to the alternative stable state 2 (degradation) (downward black arrows). However, if stressor levels are then reduced, a hysteresis occurs because the opposing forces fail to push the ecosystem to return to its original state. The recovery to state 1 is only possible if the magnitude of the stressors is reduced to a much lower level (T2) (upward black arrows) than that of the tipping point during the degradation. Adapted from Scheffer103 and Jax104.

Extended Data Fig. 2 Tropicalisation hotspot and CO2 vent study areas.

Map showing the three tropicalisation hotspots in Sydney (Australia) where tropical and temperate fish communities were surveyed, and the CO2 vents at White Island (New Zealand) where the effects of elevated CO2 on fish communities and sea-urchins were investigated.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Tables 1–7.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coni, E.O.C., Nagelkerken, I., Ferreira, C.M. et al. Ocean acidification may slow the pace of tropicalization of temperate fish communities. Nat. Clim. Chang. 11, 249–256 (2021). https://doi.org/10.1038/s41558-020-00980-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-020-00980-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing