Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observational constraint on cloud feedbacks suggests moderate climate sensitivity

Abstract

Global climate models predict warming in response to increasing GHG concentrations, partly due to decreased tropical low-level cloud cover and reflectance. We use satellite observations that discriminate stratocumulus from shallow cumulus clouds to separately evaluate their sensitivity to warming and constrain the tropical contribution to low-cloud feedback. We find an observationally inferred low-level cloud feedback two times smaller than a previous estimate. Shallow cumulus clouds are insensitive to warming, whereas global climate models exhibit a large positive cloud feedback in shallow cumulus regions. In contrast, stratocumulus clouds show sensitivity to warming and the tropical inversion layer strength, controlled by the tropical Pacific sea surface temperature gradient. Models fail to reproduce the historical sea surface temperature gradient trends and therefore changes in inversion strength, generating an overestimate of the positive stratocumulus cloud feedback. Continued weak east Pacific warming would therefore produce a weaker low-cloud feedback and imply a more moderate climate sensitivity (3.47 ± 0.33 K) than many models predict.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Observed low-cloud climatology and simulated low-cloud feedback.
Fig. 2: Observed sensitivity of low-cloud type to environmental factors for the period 2007–2016.
Fig. 3: SST and EIS observed historical trends and simulated future changes.
Fig. 4: Observationally inferred total, Sc and Cu cloud feedback for different potential future SST pattern trends.
Fig. 5: Simulated versus observationally inferred low-cloud feedback.

Data availability

The CALIPSO-GOCCP CASCCAD statistical datasets (Cesana et al.2) can be downloaded from the GISS website (https://data.giss.nasa.gov/clouds/casccad/). CERES-EBAF 4.0 SW TOA fluxes were downloaded from the CERES website (https://ceres.larc.nasa.gov/data/#energy-balanced-and-filled-ebaf). The CMIP6 GCM outputs were downloaded from the ESGF (https://esgf-node.llnl.gov/search/cmip6/). ERA5 files were downloaded from climserv (https://climserv.ipsl.polytechnique.fr/fr/les-donnees/era-5.html). HadISST1.1 files were downloaded from https://www.metoffice.gov.uk/hadobs/hadisst/. ERSSTv5 files were downloaded from the NOAA National Centers for Environmental Information website (https://www1.ncdc.noaa.gov/pub/data/cmb/ersst/v5/netcdf/). NCEP/DOE reanalysis2, NCEP-NCAR reanalysis1 and NOAA/CIRES/DOE 20th Century Reanalysis V3 were downloaded from the NOAA ESRL Physical Sciences Division website (http://www.esrl.noaa.gov/psd/data/).

Code availability

The codes used to produce the figures and to compute the different derivatives and feedbacks are available from the corresponding author on request.

References

  1. 1.

    Zelinka, M. D., Zhou, C. & Klein, S. A. Insights from a refined decomposition of cloud feedbacks. Geophys. Res. Lett. 43, 9259–9269 (2016).

    Article  Google Scholar 

  2. 2.

    Bony, S. & Dufresne, J. L. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett. 32, L20806 (2005).

    Article  Google Scholar 

  3. 3.

    Vial, J., Dufresne, J. L. & Bony, S. On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim. Dynam. 41, 3339–3362 (2013).

    Article  Google Scholar 

  4. 4.

    Caldwell, P. M., Zelinka, M. D., Taylor, K. E. & Marvel, K. Quantifying the sources of intermodel spread in equilibrium climate sensitivity. J. Clim. 29, 513–524 (2016).

    Article  Google Scholar 

  5. 5.

    Wyant, M. C., Bretherton, C. S., Rand, H. A. & Stevens, D. E. Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. J. Atmos. Sci. 54, 168–192 (1997).

    Article  Google Scholar 

  6. 6.

    Qu, X., Hall, A., Klein, S. A. & Caldwell, P. M. On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. Clim. Dynam. 42, 2603–2626 (2014).

    Article  Google Scholar 

  7. 7.

    Brient, F. & Schneider, T. Constraints on climate sensitivity from space-based measurements of low-cloud reflection. J. Clim. 29, 5821–5835 (2016).

    Article  Google Scholar 

  8. 8.

    Klein, S. A., Hall, A., Norris, J. R. & Pincus, R. Low-cloud feedbacks from cloud-controlling factors: a review. Surv. Geophys. 38, 1307–1329 (2017).

    Article  Google Scholar 

  9. 9.

    Vial, J., Bony, S., Stevens, B. & Vogel, R. Mechanisms and model diversity of trade-wind shallow cumulus cloud feedbacks: a review. Surv. Geophys. 38, 1331–1353 (2017).

    Article  Google Scholar 

  10. 10.

    Bretherton, C. S. Insights into low-latitude cloud feedbacks from high-resolution models. Phil. Trans. R. Soc. A 373, 20140415 (2015).

    Article  Google Scholar 

  11. 11.

    Narenpitak, P. & Bretherton, C. S. Understanding negative subtropical shallow cumulus cloud feedbacks in a near-global aquaplanet model using limited area cloud-resolving simulations. J. Adv. Model. Earth Syst. 11, 1600–1626 (2019).

  12. 12.

    Cesana, G., Del Genio, A. D. & Chepfer, H. The Cumulus And Stratocumulus CloudSat-CALIPSO Dataset (CASCCAD). Earth Syst. Sci. Data 11, 1745–1764 (2019).

    Article  Google Scholar 

  13. 13.

    Wood, R. & Bretherton, C. S. On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Clim. 19, 6425–6432 (2006).

    Article  Google Scholar 

  14. 14.

    Myers, T. A. & Norris, J. R. Reducing the uncertainty in subtropical cloud feedback. Geophys. Res. Lett. 43, 2144–2148 (2016).

    Article  Google Scholar 

  15. 15.

    Seager, R. et al. Strengthening tropical pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019).

    Article  Google Scholar 

  16. 16.

    Coats, S. & Karnauskas, K. B. Are simulated and observed twentieth century tropical pacific sea surface temperature trends significant relative to internal variability? Geophys. Res. Lett. 44, 9928–9937 (2017).

    Article  Google Scholar 

  17. 17.

    Qu, X., Hall, A., Klein, S. A. & Deangelis, A. M. Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors. Geophys. Res. Lett. 42, 7767–7775 (2015).

    Article  Google Scholar 

  18. 18.

    Nuijens, L., Medeiros, B., Sandu, I. & Ahlgrimm, M. The behavior of trade-wind cloudiness in observations and models: the major cloud components and their variability. J. Adv. Model. Earth Syst. 7, 600–616 (2015).

    Article  Google Scholar 

  19. 19.

    Cesana, G. et al. Evaluating models’ response of tropical low clouds to SST forcings using CALIPSO observations. Atmos. Chem. Phys. 19, 2813–2832 (2019).

    CAS  Article  Google Scholar 

  20. 20.

    Andrews, T. & Webb, M. J. The dependence of global cloud and lapse rate feedbacks on the spatial structure of tropical pacific warming. J. Clim. 31, 641–654 (2018).

    Article  Google Scholar 

  21. 21.

    Zhou, C., Zelinka, M. D. & Klein, S. A. Impact of decadal cloud variations on the Earth’s energy budget. Nat. Geosci. 9, 871–874 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Richter, I. Climate model biases in the eastern tropical oceans: causes, impacts and ways forward. WIREs Clim. Change 6, 345–358 (2015).

    Article  Google Scholar 

  23. 23.

    Marvel, K., Pincus, R., Schmidt, G. A. & Miller, R. L. Internal variability and disequilibrium confound estimates of climate sensitivity from observations. Geophys. Res. Lett. 45, 1595–1601 (2018).

    Article  Google Scholar 

  24. 24.

    Tselioudis, G., Rossow, W., Zhang, Y. & Konsta, D. Global weather states and their properties from passive and active satellite cloud retrievals. J. Clim. 26, 7734–7746 (2013).

    Article  Google Scholar 

  25. 25.

    Bony, S., Dufresne, J. L., Le Treut, H., Morcrette, J. J. & Senior, C. On dynamic and thermodynamic components of cloud changes. Clim. Dynam. 22, 71–86 (2004).

    Article  Google Scholar 

  26. 26.

    Knutti, R., Rugenstein, M. A. A. & Hegerl, G. C. Beyond equilibrium climate sensitivity. Nat. Geosci. 10, 727–736 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, e2019GL085782 (2020).

    Article  Google Scholar 

  28. 28.

    Andrews, T., Gregory, J. M. & Webb, M. J. The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. J. Clim. 28, 1630–1648 (2015).

    Article  Google Scholar 

  29. 29.

    Soden, B. J. et al. Quantifying climate feedbacks using radiative kernels. J. Clim. 21, 3504–3520 (2008).

    Article  Google Scholar 

  30. 30.

    Shell, K. M., Kiehl, J. T. & Shields, C. A. Using the radiative kernel technique to calculate climate feedbacks in NCAR’s Community atmospheric model. J. Clim. 21, 2269–2282 (2008).

    Article  Google Scholar 

  31. 31.

    Gregory, J. M. et al. A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett. 31, L03205 (2004).

    Google Scholar 

Download references

Acknowledgements

G.V.C. and A.D.D. were supported by a CloudSat-CALIPSO RTOP at the NASA Goddard Institute for Space Studies. We thank NASA and CNES for giving access to CALIPSO and CloudSat observations, and Climserv for giving access to CALIPSO-GOCCP observations and CMIP6 model outputs and for providing computing resources. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modelling groups (listed in Supplementary Tables 1 and 3) for producing and making available their model output. G.V.C. thanks M. Richardson for proofreading the first draft of the manuscript and providing useful comments and M. Zelinka for providing an updated version of supplementary table 1 of his study27.

Author information

Affiliations

Authors

Contributions

G.V.C. designed the study and carried out the analysis with inputs from A.D.D. G.V.C. wrote the manuscript with contributions from A.D.D.

Corresponding author

Correspondence to Grégory V. Cesana.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Casey Wall and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Texts 1 and 2, Figs. 1–11 and Tables 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cesana, G.V., Del Genio, A.D. Observational constraint on cloud feedbacks suggests moderate climate sensitivity. Nat. Clim. Chang. 11, 213–218 (2021). https://doi.org/10.1038/s41558-020-00970-y

Download citation

Further reading

Search

Quick links