Aerosols in current and future Arctic climate

Abstract

Mechanisms of Arctic amplification and Arctic climate change are difficult to pinpoint, and current climate models do not represent the complex local processes and feedbacks at play, in particular for aerosol–climate interactions. This Perspective highlights the role of aerosols in contemporary Arctic climate change and stresses that the Arctic natural aerosol baseline is changing fast and its regional characteristics are very diverse. We argue that to improve understanding of present day and future Arctic, more detailed knowledge is needed on natural Arctic aerosol emissions, their evolution and transport, and the effects on cloud microphysics. In particular, observation and modelling work should focus on the sensitivity of aerosol–climate interactions to the rapidly evolving base state of the Arctic.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Aerosol processes during polar day and night.
Fig. 2: Regional characteristics of aerosol–climate interactions.

References

  1. 1.

    Manabe, S. & Wetherald, R. T. The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci. 32, 3–15 (1975).

    CAS  Google Scholar 

  2. 2.

    Chapman, W. L. & Walsh, J. E. Recent variations of sea ice and air temperature in high latitudes. Bull. Am. Meteorological Soc. 74, 33–48 (1993).

    Google Scholar 

  3. 3.

    Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77, 85–96 (2011).

    Google Scholar 

  4. 4.

    Hall, A. The role of surface albedo feedback in climate. J. Clim. 17, 1550–1568 (2004).

    Google Scholar 

  5. 5.

    Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).

    CAS  Google Scholar 

  6. 6.

    Wendisch, M. et al. The Arctic cloud puzzle: using ACLOUD/PASCAL multiplatform observations to unravel the role of clouds and aerosol particles in Arctic amplification. Bull. Am. Meteorological Soc. 100, 841–871 (2019). Focuses on the role of aerosols and clouds in Arctic amplification.

    Google Scholar 

  7. 7.

    Shupe, M. D. & Intrieri, J. M. Cloud radiative forcing of the Arctic surface: the influence of cloud properties, surface albedo, and solar zenith angle. J. Clim. 17, 616–628 (2004).

    Google Scholar 

  8. 8.

    Mauritsen, T. et al. An Arctic CCN-limited cloud-aerosol regime. Atmos. Chem. Phys. 11, 165–173 (2011). Case-study-based demonstration of the importance of aerosol particles for cloud formation.

    CAS  Google Scholar 

  9. 9.

    Cox, C. J. et al. The role of springtime Arctic clouds in determining autumn sea ice extent. J. Clim. 29, 6581–6596 (2016).

    Google Scholar 

  10. 10.

    Bennartz, R. et al. July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature 496, 83–86 (2013).

    CAS  Google Scholar 

  11. 11.

    Johansson, E., Devasthale, A., Tjernström, M., Ekman, A. M. L. & L’Ecuyer, T. Response of the lower troposphere to moisture intrusions into the Arctic. Geophys. Res. Lett. 44, 2527–2536 (2017).

    Google Scholar 

  12. 12.

    Pithan, F. & Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 7, 181–184 (2014).

    CAS  Google Scholar 

  13. 13.

    Zelinka, M. D. et al. Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Clim. 26, 5007–5027 (2013).

    Google Scholar 

  14. 14.

    Stevens, R. G. et al. A model intercomparison of CCN-limited tenuous clouds in the high Arctic. Atmos. Chem. Phys. 18, 11041–11071 (2018).

    CAS  Google Scholar 

  15. 15.

    Pithan, F. et al. Role of air-mass transformations in exchange between the Arctic and mid-latitudes. Nat. Geosci. 11, 805–812 (2018).

    CAS  Google Scholar 

  16. 16.

    Morrison, H. et al. Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci. 5, 11–17 (2012).

    CAS  Google Scholar 

  17. 17.

    Pithan, F. et al. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison. J. Adv. Modeling Earth Syst. 8, 1345–1357 (2016).

    Google Scholar 

  18. 18.

    Strom, J. et al. One year of particle size distribution and aerosol chemical composition measurements at the Zeppelin Station, Svalbard, March 2000–March 2001. Phys. Chem. Earth 28, 1181–1190 (2003).

    Google Scholar 

  19. 19.

    Lubin, D. & Vogelmann, A. M. A climatologically significant aerosol longwave indirect effect in the Arctic. Nature 439, 453–456 (2006).

    CAS  Google Scholar 

  20. 20.

    Kay, J. E. et al. Recent advances in Arctic cloud and climate research. Curr. Clim. Change Rep. 2, 159–169 (2016).

    Google Scholar 

  21. 21.

    Clarke, A. D. & Noone, K. J. Soot in the Arctic snowpack: a cause for perturbations in radiative transfer. Atmos. Environ. 19, 2045–2053 (1985).

    Google Scholar 

  22. 22.

    AMAP Assessment 2015: Black Carbon and Ozone as Arctic Climate Forcers (AMAP, 2015).

  23. 23.

    Rinke, A., Dethloff, K. & Fortmann, M. Regional climate effects of Arctic Haze. Geophys. Res. Lett. https://doi.org/10.1029/2004GL020318 (2004).

  24. 24.

    Quinn, P. K. et al. Arctic haze: current trends and knowledge gaps. Tellus Ser. B 59, 99–114 (2007).

    Google Scholar 

  25. 25.

    Uttal, T. et al. Surface heat budget of the Arctic Ocean. Bull. Am. Meteorological Soc. 83, 255–275 (2002).

    Google Scholar 

  26. 26.

    Garrett, T. J., Radke, L. F. & Hobbs, P. V. Aerosol effects on cloud emissivity and surface longwave heating in the Arctic. J. Atmos. Sci. 59, 769–778 (2002).

    Google Scholar 

  27. 27.

    Shindell, D. & Faluvegi, G. Climate response to regional radiative forcing during the twentieth century. Nat. Geosci. 2, 294–300 (2009).

    CAS  Google Scholar 

  28. 28.

    The Impact of Black Carbon on the Arctic Climate (AMAP, 2011).

  29. 29.

    Eckhardt, S. et al. Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi-model evaluation using a comprehensive measurement data set. Atmos. Chem. Phys. 15, 9413–9433 (2015).

    CAS  Google Scholar 

  30. 30.

    Abbatt, J. P. D. et al. New insights into aerosol and climate in the Arctic. Atmos. Chem. Phys. 19, 2527–2560 (2019). Comprehensive summary and description of the state-of-the-art in Arctic aerosol research.

    Google Scholar 

  31. 31.

    Boy, M. et al. Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes. Atmos. Chem. Phys. 19, 2015–2061 (2019). Overview on aerosol processes linked to the interactions between the cryosphere, ecosystems and the atmosphere.

    CAS  Google Scholar 

  32. 32.

    Baccarini, A. et al. Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions. Nat. Commun. 11, 4924 (2020).

    CAS  Google Scholar 

  33. 33.

    Barber, D. G. et al. MOSAiC: Multidisciplinary drifting Observatory for the Study of Arctic Climate: Science Plan (IASC, 2016).

  34. 34.

    Arnold, S. R. et al. Arctic air pollution: challenges and opportunities for the next decade. Elem. Sci. Anth. 4, 000104 (2016).

  35. 35.

    Thomas, J. L. et al. Fostering multidisciplinary research on interactions between chemistry, biology, and physics within the coupled cryosphere-atmosphere system. Elem. Sci. Anth 7, 58 (2019).

    Google Scholar 

  36. 36.

    Steiner, N. & Stefels, J. Commentary on the outputs and future of Biogeochemical Exchange Processes at Sea-Ice Interfaces (BEPSII). Elem. Sci. Anth. 5, 81 (2017).

  37. 37.

    Willis, M. D. et al. Growth of nucleation mode particles in the summertime Arctic: a case study. Atmos. Chem. Phys. 16, 7663–7679 (2016).

    CAS  Google Scholar 

  38. 38.

    Willis, M. D. et al. Evidence for marine biogenic influence on summertime Arctic aerosol. Geophys. Res. Lett. 44, 6460–6470 (2017).

    Google Scholar 

  39. 39.

    Croft, B. et al. Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago. Atmos. Chem. Phys. 19, 2787–2812 (2019). Highlights the importance of volatile organic compounds for secondary aerosol formation in the Arctic.

    CAS  Google Scholar 

  40. 40.

    Karl, M., Leck, C., Coz, E. & Heintzenberg, J. Marine nanogels as a source of atmospheric nanoparticles in the high Arctic. Geophys. Res. Lett. 40, 3738–3743 (2013).

    CAS  Google Scholar 

  41. 41.

    Orellana, M. V. et al. Marine microgels as a source of cloud condensation nuclei in the high Arctic. Proc. Natl Acad. Sci. USA 108, 13612–13617 (2011).

    CAS  Google Scholar 

  42. 42.

    Groot Zwaaftink, C. D., Grythe, H., Skov, H. & Stohl, A. Substantial contribution of northern high-latitude sources to mineral dust in the Arctic. J. Geophys. Res. Atmos. 121, 13678–13697 (2016).

    CAS  Google Scholar 

  43. 43.

    Another active year for Arctic wildfires. Copernicus https://atmosphere.copernicus.eu/another-active-year-arctic-wildfires (8 July 2020).

  44. 44.

    Stohl, A. Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys. Res. Atmos. 111, D11306 (2006).

    Google Scholar 

  45. 45.

    Thomas, M. A., Devasthale, A., Tjernström, M. & Ekman, A. M. L. The Relation Between Aerosol Vertical Distribution and Temperature Inversions in the Arctic in Winter and Spring. Geophys. Res. Lett. 46, 2836–2845 (2019).

    Google Scholar 

  46. 46.

    Sand, M., Berntsen, T. K., Seland, Ø. & Kristjánsson, J. E. Arctic surface temperature change to emissions of black carbon within Arctic or midlatitudes. J. Geophys. Res. Atmos. 118, 7788–7798 (2013). Quantification of the local and remote Arctic climate effect of black carbon.

    CAS  Google Scholar 

  47. 47.

    Goelles, T. & Bøggild, C. E. Albedo reduction of ice caused by dust and black carbon accumulation: a model applied to the K-transect, West Greenland. J. Glaciol. 63, 1063–1076 (2017).

    Google Scholar 

  48. 48.

    Kylling, A., Groot Zwaaftink, C. D. & Stohl, A. Mineral dust instantaneous radiative forcing in the Arctic. Geophys. Res. Lett. 45, 4290–4298 (2018).

    Google Scholar 

  49. 49.

    Sand, M. et al. The Arctic response to remote and local forcing of black carbon. Atmos. Chem. Phys. 13, 211–224 (2013).

    Google Scholar 

  50. 50.

    Acosta Navarro, J. C. et al. Amplification of Arctic warming by past air pollution reductions in Europe. Nat. Geosci. 9, 277–281 (2016). Modelling-based discussion on the complex response of Arctic temperature to changed anthropogenic emissions.

    CAS  Google Scholar 

  51. 51.

    Lewinschal, A. et al. Local and remote temperature response of regional SO2 emissions. Atmos. Chem. Phys. 19, 2385–2403 (2019).

    CAS  Google Scholar 

  52. 52.

    Gagné, M.-È., Fyfe, J. C., Gillett, N. P., Polyakov, I. V. & Flato, G. M. Aerosol-driven increase in Arctic sea ice over the middle of the twentieth century. Geophys. Res. Lett. 44, 7338–7346 (2017).

    Google Scholar 

  53. 53.

    Najafi, M. R., Zwiers, F. W. & Gillett, N. P. Attribution of Arctic temperature change to greenhouse-gas and aerosol influences. Nat. Clim. Change 5, 246–249 (2015).

    CAS  Google Scholar 

  54. 54.

    Conley, A. J. et al. Multimodel surface temperature responses to removal of U.S. sulfur dioxide emissions. J. Geophys. Res. Atmos. 123, 2773–2796 (2018).

    CAS  Google Scholar 

  55. 55.

    Samset, B. H. et al. Climate impacts from a removal of anthropogenic aerosol emissions. Geophys. Res. Lett. 45, 1020–1029 (2018).

    CAS  Google Scholar 

  56. 56.

    Browse, J. et al. The complex response of Arctic aerosol to sea-ice retreat. Atmos. Chem. Phys. 14, 7543–7557 (2014).

    CAS  Google Scholar 

  57. 57.

    Struthers, H. et al. Climate-induced changes in sea salt aerosol number emissions: 1870 to 2100. J. Geophys. Res. Atmos. 118, 670–682 (2013).

    CAS  Google Scholar 

  58. 58.

    Willis, M. D., Leaitch, W. R. & Abbatt, J. P. D. Processes controlling the composition and abundance of Arctic aerosol. Rev. Geophys. 56, 621–671 (2018).

    Google Scholar 

  59. 59.

    Law, K. S. et al. Arctic air pollution: new insights from POLARCAT-IPY. Bull. Am. Meteorol. Soc. 95, 1873–1895 (2014).

    Google Scholar 

  60. 60.

    Schmale, J. et al. Local Arctic air pollution: a neglected but serious problem. Earth’s Future 6, 1385–1412 (2018).

    Google Scholar 

  61. 61.

    Held, A., Brooks, I. M., Leck, C. & Tjernström, M. On the potential contribution of open lead particle emissions to the central Arctic aerosol concentration. Atmos. Chem. Phys. 11, 3093–3105 (2011).

    CAS  Google Scholar 

  62. 62.

    Park, K. et al. Unexpectedly high dimethyl sulfide concentration in high-latitude Arctic sea ice melt ponds. Environ. Sci. Processes Impacts 21, 1642–1649 (2019).

    CAS  Google Scholar 

  63. 63.

    Chang, R. Y. W. et al. Aerosol composition and sources in the central Arctic Ocean during ASCOS. Atmos. Chem. Phys. 11, 10619–10636 (2011).

    CAS  Google Scholar 

  64. 64.

    Strong, C. & Rigor, I. G. Arctic marginal ice zone trending wider in summer and narrower in winter. Geophys. Res. Lett. 40, 4864–4868 (2013).

    Google Scholar 

  65. 65.

    Galí, M., Devred, E., Babin, M. & Levasseur, M. Decadal increase in Arctic dimethylsulfide emission. Proc. Natl Acad. Sci. USA 116, 19311–19317 (2019). Observational proof of the changing natural Arctic system with implications on aerosol formation.

    Google Scholar 

  66. 66.

    Popovicheva, O. et al. East Siberian Arctic background and black carbon polluted aerosols at HMO Tiksi. Sci. Total Environ. 655, 924–938 (2019).

    CAS  Google Scholar 

  67. 67.

    Popovicheva, O. B. et al. Black carbon sources constrained by observations in the Russian high Arctic. Environ. Sci. Technol. 51, 3871–3879 (2017).

    CAS  Google Scholar 

  68. 68.

    Huang, K. et al. Russian anthropogenic black carbon: emission reconstruction and Arctic black carbon simulation. J. Geophys. Res. Atmos. 120, 11,306–11,333 (2015).

    CAS  Google Scholar 

  69. 69.

    Hirdman, D. et al. Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output. Atmos. Chem. Phys. 10, 669–693 (2010).

    CAS  Google Scholar 

  70. 70.

    Maahn, M. et al. The observed influence of local anthropogenic pollution on northern Alaskan cloud properties. Atmos. Chem. Phys. 17, 14709–14726 (2017).

    CAS  Google Scholar 

  71. 71.

    Gunsch, M. J. et al. Contributions of transported Prudhoe Bay oil field emissions to the aerosol population in Utqiaġvik, Alaska. Atmos. Chem. Phys. 17, 10879–10892 (2017).

    CAS  Google Scholar 

  72. 72.

    Lee, A. K. Y. et al. A large contribution of anthropogenic organo-nitrates to secondary organic aerosol in the Alberta oil sands. Atmos. Chem. Phys. 19, 12209–12219 (2019).

    CAS  Google Scholar 

  73. 73.

    Croft, B. et al. Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect. Nat. Commun. 7, 13444 (2016).

    CAS  Google Scholar 

  74. 74.

    Leaitch, W. R. et al. Effects of 20–100 nm particles on liquid clouds in the clean summertime Arctic. Atmos. Chem. Phys. 16, 11107–11124 (2016).

    CAS  Google Scholar 

  75. 75.

    Thomas, J. L. et al. Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada. Geophys. Res. Lett. 44, 7965–7974 (2017).

    CAS  Google Scholar 

  76. 76.

    Cox, C. J. et al. Supercooled liquid fogs over the central Greenland Ice Sheet. Atmos. Chem. Phys. 19, 7467–7485 (2019).

    CAS  Google Scholar 

  77. 77.

    Niwano, M., Hashimoto, A. & Aoki, T. Cloud-driven modulations of Greenland ice sheet surface melt. Sci. Rep. 9, 10380 (2019).

    Google Scholar 

  78. 78.

    Freud, E. et al. Pan-Arctic aerosol number size distributions: seasonality and transport patterns. Atmos. Chem. Phys. 17, 8101–8128 (2017). Makes the point of the heterogeneity of the Arctic regions through discussion of aerosol size distributions.

    CAS  Google Scholar 

  79. 79.

    Nielsen, I. E. et al. Biogenic and anthropogenic sources of aerosols at the High Arctic site Villum Research Station. Atmos. Chem. Phys. 19, 10239–10256 (2019).

    CAS  Google Scholar 

  80. 80.

    Tunved, P., Ström, J. & Krejci, R. Arctic aerosol life cycle: linking aerosol size distributions observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Ny-Ålesund, Svalbard. Atmos. Chem. Phys. 13, 3643–3660 (2013).

    Google Scholar 

  81. 81.

    Zieger, P. et al. Effects of relative humidity on aerosol light scattering in the Arctic. Atmos. Chem. Phys. 10, 3875–3890 (2010).

    CAS  Google Scholar 

  82. 82.

    Rastak, N. et al. Seasonal variation of aerosol water uptake and its impact on the direct radiative effect at Ny-Ålesund, Svalbard. Atmos. Chem. Phys. 14, 7445–7460 (2014).

    CAS  Google Scholar 

  83. 83.

    Dall´Osto, M. et al. Arctic sea ice melt leads to atmospheric new particle formation. Sci. Rep. 7, 3318 (2017).

    Google Scholar 

  84. 84.

    Vignelles, D. et al. Balloon-borne measurement of the aerosol size distribution from an Icelandic flood basalt eruption. Earth Planet. Sci. Lett. 453, 252–259 (2016).

    CAS  Google Scholar 

  85. 85.

    Wittmann, M. et al. Impact of dust deposition on the albedo of Vatnajökull ice cap, Iceland. Cryosphere 11, 741–754 (2017).

    Google Scholar 

  86. 86.

    Koike, M. et al. Year-round in situ measurements of Arctic low-level clouds: microphysical properties and their relationships with aerosols. J. Geophys. Res. Atmos. 124, 1798–1822 (2019).

  87. 87.

    Glantz, P. et al. Remote sensing of aerosols in the Arctic for an evaluation of global climate model simulations. J. Geophys. Res. Atmos. 119, 8169–8188 (2014).

    Google Scholar 

  88. 88.

    Mei, L. et al. Aerosol optical depth retrieval in the Arctic region using MODIS data over snow. Remote Sens. Environ. 128, 234–245 (2013).

    Google Scholar 

  89. 89.

    Di Pierro, M., Jaeglé, L. & Anderson, T. L. Satellite observations of aerosol transport from East Asia to the Arctic: three case studies. Atmos. Chem. Phys. 11, 2225–2243 (2011).

    Google Scholar 

  90. 90.

    Huang, J., Jaeglé, L. & Shah, V. Using CALIOP to constrain blowing snow emissions of sea salt aerosols over Arctic and Antarctic sea ice. Atmos. Chem. Phys. 18, 16253–16269 (2018).

    CAS  Google Scholar 

  91. 91.

    Tesche, M. et al. Reconciling aerosol light extinction measurements from spaceborne lidar observations and in situ measurements in the Arctic. Atmos. Chem. Phys. 14, 7869–7882 (2014).

    CAS  Google Scholar 

  92. 92.

    Navarro, J. C. A. et al. Future response of temperature and precipitation to reduced aerosol emissions as compared with increased greenhouse gas concentrations. J. Clim. 30, 939–954 (2017).

    Google Scholar 

  93. 93.

    Sand, M. et al. Response of Arctic temperature to changes in emissions of short-lived climate forcers. Nat. Clim. Change 6, 286–289 (2015). Comprehensive modelling analysis of the Arctic temperature response due to aerosol climate effects.

    Google Scholar 

  94. 94.

    Francis, J. A. & Vavrus, S. J. Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett. 10, 014005 (2015).

    Google Scholar 

  95. 95.

    Kelly, R. et al. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc. Natl Acad. Sci. USA 110, 13055–13060 (2013).

    CAS  Google Scholar 

  96. 96.

    Struthers, H. et al. The effect of sea ice loss on sea salt aerosol concentrations and the radiative balance in the Arctic. Atmos. Chem. Phys. 11, 3459–3477 (2011).

    CAS  Google Scholar 

  97. 97.

    Zábori, J. et al. Wintertime Arctic Ocean sea water properties and primary marine aerosol concentrations. Atmos. Chem. Phys. 12, 10405–10421 (2012).

    Google Scholar 

  98. 98.

    Zábori, J. et al. Comparison between summertime and wintertime Arctic Ocean primary marine aerosol properties. Atmos. Chem. Phys. 13, 4783–4799 (2013).

    Google Scholar 

  99. 99.

    Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017 (AMAP, 2017).

  100. 100.

    Barber, D. G. et al. Frost flowers on young Arctic sea ice: The climatic, chemical, and microbial significance of an emerging ice type. J. Geophys. Res. Atmos. 119, 11593–11612 (2014).

    CAS  Google Scholar 

  101. 101.

    Søreide, J. E., Leu, E., Berge, J., Graeve, M. & Falk-Petersen, S. Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob. Change Biol. 16, 3154–3163 (2010).

    Google Scholar 

  102. 102.

    Ardyna, M. et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212 (2014).

    Google Scholar 

  103. 103.

    Gilgen, A., Huang, W. T. K., Ickes, L., Neubauer, D. & Lohmann, U. How important are future marine and shipping aerosol emissions in a warming Arctic summer and autumn? Atmos. Chem. Phys. 18, 10521–10555 (2018).

    CAS  Google Scholar 

  104. 104.

    Heslin-Rees, D. et al. From a polar to a marine environment: has the changing Arctic led to a shift in aerosol light scattering properties? Atmos.Chem. Phys. 20, 13671–13686 (2020).

    CAS  Google Scholar 

  105. 105.

    Sharma, S. et al. A factor and trends analysis of multidecadal lower tropospheric observations of Arctic aerosol composition, black carbon, ozone, and mercury at Alert, Canada. J. Geophys. Res. Atmos. 124, 14133–14161 (2019). Detailed portrait of decadal trends of many aerosol variables in the Canadian Arctic.

    CAS  Google Scholar 

  106. 106.

    Sharma, S. et al. Influence of transport and ocean ice extent on biogenic aerosol sulfur in the Arctic atmosphere. J. Geophys. Res. Atmos. 117, D12209 (2012).

  107. 107.

    Bullard, J. E. et al. High-latitude dust in the Earth system. Rev. Geophys. 54, 447–485 (2016).

    Google Scholar 

  108. 108.

    Schmale, J. et al. Overview of the Antarctic Circumnavigation Expedition: Study of Preindustrial-like Aerosols and Their Climate Effects (ACE-SPACE). Bull. Am. Meteorol. Soc. 100, 2260–2283 (2019).

    Google Scholar 

  109. 109.

    Hodshire, A. L. et al. The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings. Atmos. Chem. Phys. 19, 3137–3160 (2019).

    CAS  Google Scholar 

  110. 110.

    Uttal, T. et al. International Arctic systems for observing the atmosphere: an International Polar Year legacy consortium. Bull. Am. Meteorol. Soc. 97, 1033–1056 (2016).

    Google Scholar 

  111. 111.

    Van den Heuvel F., Hübner C., Błaszczyk M., Heimann M. & Lihavainen H. (eds) SESS Report 2019 (Svalbard Integrated Arctic Earth Observing System, 2002); https://sios-svalbard.org/SESS_Issue2

  112. 112.

    Sand, M. et al. Aerosols at the poles: an AeroCom phase II multi-model evaluation. Atmos. Chem. Phys. Discuss. 2017, 12197–12218 (2017).

    Google Scholar 

  113. 113.

    Zamora, L. M., Kahn, R. A., Huebert, K. B., Stohl, A. & Eckhardt, S. A satellite-based estimate of combustion aerosol cloud microphysical effects over the Arctic Ocean. Atmos. Chem. Phys. 18, 14949–14964 (2018).

    CAS  Google Scholar 

  114. 114.

    Stofferahn, E. & Boybeyi, Z. Investigation of aerosol effects on the Arctic surface temperature during the diurnal cycle: part 2 – Separating aerosol effects. Int. J. Climatol. 37, 775–787 (2017).

    Google Scholar 

  115. 115.

    May, N. W., Quinn, P. K., McNamara, S. M. & Pratt, K. A. Multiyear study of the dependence of sea salt aerosol on wind speed and sea ice conditions in the coastal Arctic. J. Geophys. Res. Atmos. 121, 9208–9219 (2016).

    Google Scholar 

  116. 116.

    Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263 (2017).

    Google Scholar 

  117. 117.

    Crusius, J. et al. Glacial flour dust storms in the Gulf of Alaska: hydrologic and meteorological controls and their importance as a source of bioavailable iron. Geophys. Res. Lett. 38, L06602 (2011).

    Google Scholar 

  118. 118.

    Tobo, Y. et al. Glacially sourced dust as a potentially significant source of ice nucleating particles. Nat. Geosci. 12, 253–258 (2019).

    CAS  Google Scholar 

  119. 119.

    Bring, A., Shiklomanov, A. & Lammers, R. B. Pan-Arctic river discharge: prioritizing monitoring of future climate change hot spots. Earth’s Future 5, 72–92 (2017).

    Google Scholar 

  120. 120.

    Holmes, R. M. et al. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuaries Coasts 35, 369–382 (2012).

    CAS  Google Scholar 

  121. 121.

    Nummelin, A., Ilicak, M., Li, C. & Smedsrud, L. H. Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover. J. Geophys. Res. Oceans 121, 617–637 (2016).

    Google Scholar 

  122. 122.

    Meire, L. et al. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Change Biol. 23, 5344–5357 (2017).

    Google Scholar 

  123. 123.

    Assmy, P. et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7, 40850 (2017).

    CAS  Google Scholar 

  124. 124.

    Kim, J.-S., Kug, J.-S., Jeong, S.-J., Park, H. & Schaepman-Strub, G. Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation. Sci. Adv. 6, eaax3308 (2020).

    Google Scholar 

  125. 125.

    Peters, G. P. et al. Future emissions from shipping and petroleum activities in the Arctic. Atmos. Chem. Phys. 11, 5305–5320 (2011).

    CAS  Google Scholar 

  126. 126.

    Zhang, X. et al. Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nat. Clim. Change 3, 47–51 (2013).

    CAS  Google Scholar 

  127. 127.

    Kramshøj, M. et al. Large increases in Arctic biogenic volatile emissions are a direct effect of warming. Nat. Geosci. 9, 349–352 (2016).

    Google Scholar 

  128. 128.

    Twomey, S. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34, 1149–1152 (1977).

    Google Scholar 

  129. 129.

    Albrecht, B. A. Aerosols, cloud microphysics, and fractional cloudiness. Science 245, 1227–1230 (1989).

    CAS  Google Scholar 

  130. 130.

    Sotiropoulou, G., Bossioli, E. & Tombrou, M. Modeling extreme warm-air advection in the arctic: the role of microphysical treatment of cloud droplet doncentration. J. Geophys. Res. Atmos. 124, 3492–3519 (2019).

    Google Scholar 

  131. 131.

    Curry, J. A. Interactions among aerosols, clouds, and climate of the Arctic Ocean. Sci. Total Environ. 160–161, 777–791 (1995).

    Google Scholar 

  132. 132.

    Wex, H. et al. Annual variability of ice-nucleating particle concentrations at different Arctic locations. Atmos. Chem. Phys. 19, 5293–5311 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

J.S. is the Ingvar Kamprad Chair for Extreme Environment Research, sponsored by Ferring Pharmaceuticals, and acknowledges funding from the Swiss National Science Foundation (projects 200021_188478 and 200021_169090). A.E. would like to acknowledge the Swedish Research Council (Vetenskapsrådet), DNR2015-05318 and the European Union’s Horizon 2020 programme, grant agreement no. 821205. P.Z. was supported by the Swedish Research Council (Vetenskapsrådet starting grant, project no. 2018-05045). P.Z. and A.E. also acknowledge support from the Knut and Alice Wallenberg Foundation, project Arctic Climate Across Scales (ACAS, project no. 2016.0024).

Author information

Affiliations

Authors

Contributions

J.S. developed the idea for the Perspective. P.Z. and A.E. helped to elaborate the content. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Julia Schmale.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schmale, J., Zieger, P. & Ekman, A.M.L. Aerosols in current and future Arctic climate. Nat. Clim. Chang. 11, 95–105 (2021). https://doi.org/10.1038/s41558-020-00969-5

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing