Decoupling of the Arctic Oscillation and North Atlantic Oscillation in a warmer climate


The North Atlantic Oscillation and the Arctic Oscillation are modes of climate variability affecting temperature and precipitation in the mid-latitudes. Here we use reanalysis data and climate model simulations of historical and warm climates to show that the relationship between the two oscillations changes with climate warming. The two modes are currently highly correlated, as both are strongly influenced by the downward propagation of stratospheric polar vortex anomalies into the troposphere. When considering a very warm climate scenario, the hemispherically defined Arctic Oscillation pattern shifts to reflect variability of the North Pacific storm track, while the regionally defined North Atlantic Oscillation pattern remains stable. The stratosphere remains an important precursor for North Atlantic Oscillation, and surface Eurasian and Aleutian pressure anomalies precede stratospheric anomalies. Idealized general circulation model simulations suggest that these modifications are linked to the stronger warming of the Pacific compared with the slower warming of the Atlantic Ocean.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: SLP climatology and modes of variability.
Fig. 2: Spatial and temporal correlations.
Fig. 3: Stratosphere–troposphere coupling: weak polar vortex.
Fig. 4: Climatology response and natural variability.

Data availability

All CMIP5 data used in this study are available on Earth System Grid Federation (ESGF) on the following link: NOAA-CFSR reanalysis data are available at ERA-Interim reanalysis data are available at

Code availability

The ICTP AGCM ‘SPEEDY model’ can be downloaded by contacting F. Kucharski ( or as indicated in the following link: Codes used to set up model simulations, analyse data and create figures can be provided upon request from the corresponding author.


  1. 1.

    Walker, G. T. & Bliss, E. W. World weather V. Mem. R. Meteorol. Soc. 4, 53–84 (1932).

    Google Scholar 

  2. 2.

    Hurrell, J. W. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269, 676–679 (1995).

    CAS  Article  Google Scholar 

  3. 3.

    Thompson, D. W. J. & Wallace, J. M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 25, 1297–1300 (1998).

    Article  Google Scholar 

  4. 4.

    Thompson, D. & Wallace, J. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim. 13, 1000–1016 (2000).

    Article  Google Scholar 

  5. 5.

    Thompson, D. W. J., Wallace, J. M. & Hegerl, G. C. Annular modes in the extratropical circulation. Part II: Trends. J. Clim. 13, 1018–1036 (2000).

    Article  Google Scholar 

  6. 6.

    Cohen, J. et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627–637 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Ambaum, M. H. P., Hoskins, B. J. & Stephenson, D. B. Arctic Oscillation or North Atlantic Oscillation? J. Clim. 14, 3495–3507 (2001).

    Article  Google Scholar 

  8. 8.

    Wanner, H. et al. North Atlantic Oscillation—concepts and studies. Surv. Geophys. 22, 321–381 (2001).

    Article  Google Scholar 

  9. 9.

    Deser, C. On the teleconnectivity of the ‘Arctic Oscillation’. Geophys. Res. Lett. 27, 779–782 (2000).

    Article  Google Scholar 

  10. 10.

    Holland, M. M. The North Atlantic Oscillation–Arctic Oscillation in the CCSM2 and its influence on Arctic climate variability. J. Clim. 16, 2767–2781 (2003).

    Article  Google Scholar 

  11. 11.

    Baldwin, M. P. & Dunkerton, T. J. Stratospheric harbingers of anomalous weather regimes. Science 294, 581–584 (2001).

    CAS  Article  Google Scholar 

  12. 12.

    Cohen, J. & Barlow, M. The NAO, the AO, and global warming: how closely related? J. Clim. 18, 4498–4513 (2005).

    Article  Google Scholar 

  13. 13.

    Baldwin, M. & Dunkerton, T. Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res. 104, 30937–30946 (1999).

  14. 14.

    Butler, A. H. & Polvani, L. M. El Niño, La Niña, and stratospheric sudden warmings: a reevaluation in light of the observational record. Geophys. Res. Lett. (2011).

  15. 15.

    Baldwin, M. P. et al. The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001).

    Article  Google Scholar 

  16. 16.

    Jiang, Z., Feldstein, S. B. & Lee, S. The relationship between the Madden–Julian Oscillation and the North Atlantic Oscillation. Q. J. R. Meteorol. Soc. 143, 240–250 (2017).

    Article  Google Scholar 

  17. 17.

    Garfinkel, C. I., Feldstein, S. B., Waugh, D. W., Yoo, C. & Lee, S. Observed connection between stratospheric sudden warmings and the Madden–Julian Oscillation. Geophys. Res. Lett. 39, L18807 (2012).

    Article  Google Scholar 

  18. 18.

    Kang, W. & Tziperman, E. More frequent sudden stratospheric warming events due to enhanced MJO forcing expected in a warmer climate. J. Clim. 30, 8727–8743 (2017).

    Article  Google Scholar 

  19. 19.

    Wu, Q. & Zhang, X. Observed forcing-feedback processes between northern hemisphere atmospheric circulation and arctic sea ice coverage. J. Geophys. Res. (2010).

  20. 20.

    Peings, Y. & Magnusdottir, G. Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: a numerical study with CAM5. J. Clim. 27, 244–264 (2014).

    Article  Google Scholar 

  21. 21.

    García-Serrano, J., Frankignoul, C., Gastineau, G. & de la Cámara, A. On the predictability of the winter Euro-Atlantic climate: lagged influence of autumn Arctic sea ice. J. Clim. 28, 5195–5216 (2015).

    Article  Google Scholar 

  22. 22.

    Ruggieri, P., Kucharski, F., Buizza, R. & Ambaum, M. H. P. The transient atmospheric response to a reduction of sea-ice cover in the Barents and Kara Seas. Q. J. R. Meteorol. Soc. 143, 1632–1640 (2017).

    Article  Google Scholar 

  23. 23.

    Kretschmer, M., Coumou, D., Donges, J. F. & Runge, J. Using causal effect networks to analyze different arctic drivers of midlatitude winter circulation. J. Clim. 29, 4069–4081 (2016).

    Article  Google Scholar 

  24. 24.

    Nakamura, T. et al. The stratospheric pathway for Arctic impacts on midlatitude climate. Geophys. Res. Lett. 43, 3494–3501 (2016).

    Article  Google Scholar 

  25. 25.

    Cohen, J., Barlow, M., Kushner, P. & Saito, K. Stratosphere–troposphere coupling and links with Eurasian land surface variability. J. Clim. 20, 5335–5343 (2007).

    Article  Google Scholar 

  26. 26.

    Deser, C., Tomas, R. A. & Peng, S. The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Clim. 20, 4751–4767 (2007).

    Article  Google Scholar 

  27. 27.

    Hurrell, J. W. & Deser, C. North Atlantic climate variability: the role of the North Atlantic Oscillation. J. Marine Syst. 78, 28–41 (2009).

    Article  Google Scholar 

  28. 28.

    Saha, S. et al. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 91, 1015–1058 (2010).

  29. 29.

    Polvani, L. M. & Saravanan, R. The three-dimensional structure of breaking Rossby waves in the polar wintertime stratosphere. J. Atmos. Sci. 57, 3663–3685 (2000).

    Article  Google Scholar 

  30. 30.

    Chen, C., Wang, G., Xie, S.-P. & Liu, W. Why does global warming weaken the Gulf Stream but intensify the Kuroshio? J. Clim. 32, 7437–7451 (2019).

    Article  Google Scholar 

  31. 31.

    Sévellec, F., Fedorov, A. & Liu, W. Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation. Nat. Clim. Change 7, 604–610 (2017).

  32. 32.

    Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5, 475–480 (2015).

  33. 33.

    Hartman, D. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 159–254 (Cambridge Univ. Press, 2013).

  34. 34.

    Alexander, M. et al. Projected sea surface temperatures over the 21st century: changes in the mean, variability and extremes for large marine ecosystem regions of northern oceans. Elem. Sci. Anthrop. 6, 9 (2018).

    Article  Google Scholar 

  35. 35.

    Molteni, F. Atmospheric simulations using a GCM with simplified physical parameterizations. I: Model climatology and variability in multi-decadal experiments. Clim. Dynam. 20, 175–191 (2003).

    Article  Google Scholar 

  36. 36.

    Kucharski, F. et al. On the need of intermediate complexity General Circulation Models: a ‘SPEEDY’ example. Bull. Am. Meteorol. Soc. 94, 25–30 (2013).

    Article  Google Scholar 

  37. 37.

    Ayarzagüena, B. et al. Uncertainty in the response of sudden stratospheric warmings and stratosphere—troposphere coupling to quadrupled CO2 concentrations in CMIP6 models. J. Geophys. Res. 125, e2019JD032345 (2020).

  38. 38.

    Charlton-Perez, A. J. et al. On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J. Geophys. Res. 118, 2494–2505 (2013).

    Article  Google Scholar 

  39. 39.

    Furtado, J. C., Cohen, J. L., Butler, A. H., Riddle, E. E. & Kumar, A. Eurasian snow cover variability and links to winter climate in the CMIP5 models. Clim. Dynam. 45, 2591–2605 (2015).

    Article  Google Scholar 

  40. 40.

    Richter, J. H., Solomon, A. & Bacmeister, J. T. Effects of vertical resolution and nonorographic gravity wave drag on the simulated climate in the Community Atmosphere Model, Version 5. J. Adv. Model. Earth Syst. 6, 357–383 (2014).

    Article  Google Scholar 

  41. 41.

    Gong, H., Wang, L., Chen, W., Chen, X. & Nath, D. Biases of the wintertime Arctic oscillation in CMIP5 models. Environ. Res. Lett. 12, 014001 (2017).

    Article  Google Scholar 

  42. 42.

    Raddatz, T. et al. Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? Clim. Dynam. 29, 565–574 (2007).

    Article  Google Scholar 

  43. 43.

    Marsland, S. et al. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model. 5, 91–127 (2003).

    Article  Google Scholar 

  44. 44.

    Dufresne, J.-L., Foujols, M.-A. & Denvil, Sea Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim. Dynam. 40, 2123–2165 (2013).

    Article  Google Scholar 

  45. 45.

    Gent, P. R. et al. The Community Climate System Model Version 4. J. Clim. 24, 4973–4991 (2011).

    Article  Google Scholar 

  46. 46.

    Voldoire, A., Sanchez-Gomez, E. & Salas y Mélia, Dea The CNRM-CM5.1 global climate model description and basic evaluation. Clim. Dynam. 40, 2091–2121 (2013).

    Article  Google Scholar 

  47. 47.

    Johns, T. C. et al. The New Hadley Centre Climate Model (HadGEM1): evaluation of coupled simulations. J. Clim. 19, 1327–1353 (2006).

    Article  Google Scholar 

  48. 48.

    Schmidt, G. A. et al. Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst. 6, 141–184 (2014).

    Article  Google Scholar 

  49. 49.

    North, G., Bell, T., Cahalan, R. & Moeng, F. Sampling errors in the estimation of empirical orthogonal functions. Mon. Weather Rev. 110, 699–706 (1982).

  50. 50.

    Held, I. M. & Suarez, M. J. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Am. Meteorol. Soc. 75, 1825–1830 (1994).

    Article  Google Scholar 

  51. 51.

    Bourke, W. A multi-level spectral model. i. formulation and hemispheric integrations. Mon. Weather Rev. 102, 687–701 (1974).

    Article  Google Scholar 

  52. 52.

    Kucharski, F. & Molteni, F. On non-linearities in a forced North Atlantic Oscillation. Clim. Dynam. 21, 677–687 (2003).

    Article  Google Scholar 

  53. 53.

    Kucharski, F., Molteni, F. & Bracco, A. Decadal interactions between the Western Tropical Pacific and the North Atlantic Oscillation. Clim. Dynam. 26, 79–91 (2006).

    Article  Google Scholar 

Download references


We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for the Coupled Model Intercomparison Project (CMIP), and thank the climate modelling groups (listed in Data availability) for producing and making available their model output. M.E.H. and C.P. gratefully acknowledge hospitality from the Department of Earth and Planetary Sciences, Harvard University, during part of this work. M.E.H was supported by Cariplo Foundation, EXTRA project and HPC-TRES grant no. 2017-03. This article is an outcome of Progetto Dipartimenti di Eccellenza, funded by MIUR. We acknowledge CINECA HPC grant no. IsC65_CSIPAR and FAQC UniMiB grant. M.E.H. would like to thank F. Kucharski for providing SPEEDY model and for the insightful discussions. E.T. was supported by the NSF Climate Dynamics programme grant no. AGS-1924538, and thanks the Weizmann Institute of Science for its hospitality during parts of this work.

Author information




M.E.H. conducted the simulations and analysed the data. The three authors equally contributed to conceiving and designing the study, interpreting the results and writing the manuscript.

Corresponding author

Correspondence to Mostafa E. Hamouda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Edwin Gerber and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The Arctic Oscillation in ERA-Interim reanalysis, historical and RCP8.5.

The leading EOF mode (AO) for wintertime (DJF) sea-level pressure (SLP) for Historical (Hist) and RCP8.5 in CMIP5 models. Note that SPEEDY panels refer to the control run using climatology (CTL) and for Pacific SST perturbation run (Pac_P). (Unit: hPa corresponding to 1 standard deviation of the PC). Explained variance by the EOF is indicated on top.

Extended Data Fig. 2 Pacific ocean SST response is stronger than the Atlantic.

Climatology response of DJF sea surface temperature (RCP8.5-Historical) from MPI-ESM-LR.

Extended Data Fig. 3 SPEEDY General Circulation Model set up.

SPEEDY SST forcing design for Pac_P run: Positive Gaussian SST in the North Pacific Ocean with a peak of 6°C.

Extended Data Fig. 4 Strong Polar Vortex.

a, Same as fig. 3 except that it is for the strong polar vortex (SPV). The condition for a SPV event is when the 10 hPa NAM index is ≥ + 1. Stippling shows the 95% statistically significant anomalies using boot-strapping approach.

Extended Data Fig. 5 Weak polar vortex in IPSL-CM5A-LR.

a, Same as Fig. 3 & extended data Fig. 4, except that it is for IPSL-CM5A-LR.

Extended Data Fig. 6 Weak polar vortex in SPEEDY AGCM experiment.

a, Same as fig. 3, except that it is for SPEEDY AGCM. Note that the condition for the onset is based on NAM index at 30 hPa.

Extended Data Fig. 7 Polar vortex influence in the Atlantic sector.

Same as in fig. 3, except that here NAM index is for NAO domain instead of AO domain. The condition for the onset is still when the 10 hPa NAM index is ≤ − 1.5 for weak polar vortex. a, CFSR reanalysis. b, MPI historical. c, MPI RCP8.5. Stippling indicates the 95% statistically significant anomalies using boot-strapping approach.

Extended Data Fig. 8 Polar vortex influence in the Atlantic sector.

Same as in extended data Fig. 7, except for IPSL-CM5A-LR model.

Extended Data Fig. 9 Eurasian high and Aleutian low-pressure centres leading weak polar vortex.

Same as in fig. 4a, except for IPSL-CM5A-LR. (corresponds to the upward propagating surface anomalies in extended data fig. 5b).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamouda, M.E., Pasquero, C. & Tziperman, E. Decoupling of the Arctic Oscillation and North Atlantic Oscillation in a warmer climate. Nat. Clim. Chang. (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing