Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Zonally contrasting shifts of the tropical rain belt in response to climate change

Abstract

Future changes in the position of the intertropical convergence zone (ITCZ; a narrow band of heavy precipitation in the tropics) with climate change could affect the livelihood and food security of billions of people. Although models predict a future narrowing of the ITCZ, uncertainties remain large regarding its future position, with most past work focusing on zonal-mean shifts. Here we use projections from 27 state-of-the-art climate models and document a robust zonally varying ITCZ response to the SSP3-7.0 scenario by 2100, with a northward shift over eastern Africa and the Indian Ocean and a southward shift in the eastern Pacific and Atlantic oceans. The zonally varying response is consistent with changes in the divergent atmospheric energy transport and sector-mean shifts of the energy flux equator. Our analysis provides insight about mechanisms influencing the future position of the tropical rain belt and may allow for more-robust projections of climate change impacts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Future changes in the location of the ITCZ in response to climate change, as projected by CMIP6 models.
Fig. 2: Twenty-first-century series of ITCZ location as projected by CMIP6 models.
Fig. 3: Future changes in SST and precipitation in response to climate change, as projected by CMIP6 models.
Fig. 4: Future changes in the atmospheric energy input in response to climate change, as projected by CMIP6 models.
Fig. 5: Future changes in the AET over the tropics and the EFE in response to climate change, as projected by CMIP6 models.

Similar content being viewed by others

Data availability

The data we use in our analysis are all freely available. We use satellite data (monthly precipitation series on a 0.25° × 0.25° grid96 and OLR series on a 1° × 1° grid97 for 1983–2005) and climate model outputs from the sixth phase of the Coupled Model Intercomparison Project39 (CMIP6); see Supplementary Table 1.

Code availability

Upon reasonable request, the code that supports the findings of this study can be provided by the corresponding author.

References

  1. Schneider, T., Bischoff, T. & Haug, G. H. Migrations and dynamics of the intertopical convergence zone. Nature https://doi.org/10/nature13636 (2014).

  2. Waliser, D. E. & Gautier, C. A satellite-derived climatology of the ITCZ. J. Clim. 6, 2162–2174 (1993).

    Article  Google Scholar 

  3. Trenberth, K. E., Stepaniak, D. P. & Caron, J. M. The global monsoon as seen through the divergent atmospheric circulation. J. Clim. 13, 3969–3993 (2000).

    Article  Google Scholar 

  4. Adler, R. F. et al. The Version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4, 1147–1167 (2003).

    Article  Google Scholar 

  5. Donohoe, A., Marshall, J., Ferreira, D. & McGee, D. The relationship between ITCZ location and cross-equatorial atmospheric heat transport: from the seasonal cycle to the last glacial maximum. J. Clim. https://doi.org/10.1175/JCLI-D-12-00467.1 (2013).

  6. Bischoff, T. & Schneider, T. Energetic constraints on the position of the intertropical convergence zone, J. Clim. https://doi.org/10.1175/JCLI-D-13-00650.1 (2014).

  7. Berry, G. & Reeder, M. J. Objective identification of the intertropical convergence zone: climatology and trends from the ERA-interim. J. Clim. 27, 1894–1909 (2014).

    Article  Google Scholar 

  8. Wang, C. & Magnusdottir, G. The ITCZ in the central and eastern Pacific on synoptic time scales. Mon. Weather Rev. 134, 1405–1421 (2006).

    Article  Google Scholar 

  9. Adam, O., Bischoff, T. & Schneider, T. Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: zonally averaged ITCZ position. J. Clim. 29, 3219–3230 (2016).

    Article  Google Scholar 

  10. Adam, O., Bischoff, T. & Schneider, T. Seasonal and interannual variations of the energy flux equator and ITCZ. Part II: zonally varying shifts of the ITCZ. J. Clim. 29, 7281–7293 (2016).

    Article  Google Scholar 

  11. Chou, C., Tu, J.-Y. & Tan, P.-H. (2007) Asymmetry of tropical precipitation change under global warming. Geoph. Res. Lett. https://doi.org/10.1029/2007GL030327 (2007).

  12. Sachs, J. P. et al. Southward movement of the Pacific intertropical convergence zone AD 1400–1850. Nat. Geosci. https://doi.org/10.1038/NGEO554 (2009).

  13. Cai, W. et al. More extreme swings of the South Pacific convergence zone due to greenhouse warming. Nature 488, 365–369 (2012).

    Article  CAS  Google Scholar 

  14. Broecker, W. S. & Putnam, A. E. Hydrologic impacts of past shifts of Earth’s thermal equator offer insight into those to be produced by fossil fuel CO2. Proc. Natl Acad. Sci. USA 110, 16710–16715 (2013).

    Article  CAS  Google Scholar 

  15. Arbuszewski, J. A., De Menocal, P. B., Cléroux, C., Bradtmiller, L. & Mix, A. Meridional shifts of the Atlantic intertropical convergence zone since the Last Glacial Maximum. Nat. Geosci. https://doi.org/10.1038/NGEO1961 (2013).

  16. Hwang, Y.-T., Frierson, D. M. W. & Kang, S. M. Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century, Geoph. Res. Lett. https://doi.org/10.1002/grl.50502 (2013).

  17. Lau, W. K. M. & Kim, K.-M. Robust Hadley circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections. Proc. Natl Acad. Sci. USA 112, 3630–3635 (2015).

    Article  CAS  Google Scholar 

  18. Allen, R. J. A 21st century northward tropical precipitation shift caused by future anthropogenic aerosol reductions. J. Geophys. Res. Atmos. 120, 9087–9102 (2015).

    Article  Google Scholar 

  19. Allen, R. J., Evan, A. T. & Booth, B. B. B. Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late twentieth century. J. Clim. https://doi.org/10.1175/JCLI-D-15-0148.1 (2015).

  20. Byrne, M. P. & Schneider, T. Narrowing of the ITCZ in a warming climate: physical mechanisms. Geophys. Res. Lett. 43, 11350–11357 (2016).

    Article  Google Scholar 

  21. Chung, E.-S. & Soden, B. J. Hemispheric climate shifts driven by anthropogenic aerosol–cloud interactions. Nat. Geosci. https://doi.org/10.1038/NGEO2988 (2017).

  22. McFarlane, A. A. & Frierson, D. M. W. The role of ocean fluxes and radiative forcings in determining tropical rainfall shifts in RCP 8.5 simulations. Geophys. Res. Lett. 44, 8656–8664 (2017).

    Article  Google Scholar 

  23. Bony, S. et al. Clouds, circulation and climate sensitivity. Nat. Geosci. 8, 261–268 (2015).

    Article  CAS  Google Scholar 

  24. Cox, P. M. et al. Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature 453, 212–215 (2008).

    Article  CAS  Google Scholar 

  25. Rotstayn, L., Collier, M. & Luo, J. Effects of declining aerosols on projections of zonally averaged tropical precipitation. Environ. Res. 10, 044018 (2015).

    Google Scholar 

  26. Lamarque, J. M. et al. Global and regional evolution of shortlived radiatively-active gases and aerosols in the representative concentration pathways. Climatic Change 109, 191–212 (2011).

    Article  CAS  Google Scholar 

  27. Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77, 85–96 (2011).

    Article  Google Scholar 

  28. Labe, Z., Magnusdottir, G. & Stern, H. Variability of Arctic sea ice thickness using PIOMAS and the CESM large ensemble. J. Clim. 31, 3233–3247 (2018).

    Article  Google Scholar 

  29. Immerzeel, W. W., Pellicciotti, F. & Bierkens, M. F. P. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat. Geosci. 6, 742–745 (2013).

    Article  CAS  Google Scholar 

  30. Chaturvedi, R. K., Kulkarni, A., Karyakarte, Y., Joshi, J. & Bala, G. Glacial mass balance changes in the Karakoram and Himalaya based on CMIP5 multi-model climate projections. Climatic Change 123, 315–328 (2014).

    Article  Google Scholar 

  31. Tomas, R. A., Deser, C. & Sun, L. The role of ocean heat transport in the global climate response to projected Arctic sea ice loss. J. Clim. 29, 6841–6859 (2016).

    Article  Google Scholar 

  32. Weaver, A. J. et al. Stability of the Atlantic meridional overturning circulation: a model intercomparison. Geophys. Res. Lett. 39, L20709 (2012).

    Article  Google Scholar 

  33. Cheng, W., Chiang, J. C. H. & Zhang, D. Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Clim. 26, 7187–7197 (2013).

    Article  Google Scholar 

  34. Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5, 475–480 (2015).

    Article  Google Scholar 

  35. Weijer, W., Cheng, W., Garuba, O. A., Hu, A. & Nadiga, B. T. (2020) CMIP6 models predict significant 21st century decline of the Atlantic meridional overturning circulation. Geophys. Res. Lett. https://doi.org/10.1029/2019GL086075 (2020).

  36. Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).

    Article  CAS  Google Scholar 

  37. Zhang, R. & Delworth, T. L. Simulated topical response to a substantial weakening of the Atlantic thermohaline circulation. J. Clim. 18, 1853–1860 (2005).

    Article  Google Scholar 

  38. Chen, Y., Langenbrunner, B. & Randerson, J. T. Future drying in Central America and northern South America linked with Atlantic meridional overturning circulation. Geophys. Res. Lett. 45, 9226–9235 (2018).

    Article  Google Scholar 

  39. Eyring et al. An overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  40. O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

    Article  Google Scholar 

  41. Van Vuuren, D. P. et al. Representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

    Article  Google Scholar 

  42. Nicholson, S. E. The ITCZ and the seasonal cycle over equatorial Africa. Bull. Am. Meteorol. Soc. 99, 337–348 (2018).

    Article  Google Scholar 

  43. Mamalakis, A. & Foufoula-Georgiou, E. A multivariate probabilistic framework for tracking the intertropical convergence zone: analysis of recent climatology and past trends. Geophys. Res. Lett. https://doi.org/10.1029/2018GL079865 (2018).

  44. Byrne, M. P., Pendergrass, A. G., Rapp, A. D. & Wodzicki, K. R. Response of the intertropical convergence zone to climate change: location, width, and strength. Curr. Clim. Change Rep. 4, 355–370 (2018).

    Article  Google Scholar 

  45. Pauluis, O. Boundary layer dynamics and cross-equatorial Hadley circulation. J. Atmos. Sci. 61, 1161–1173 (2004).

    Article  Google Scholar 

  46. Wei, H.‐H. & Bordoni, S. Energetic constraints on the ITCZ position in idealized simulations with a seasonal cycle. J. Adv. Model. Earth Syst. 10, 1708–1725 (2018).

    Article  Google Scholar 

  47. Xie, S.-P. et al. Global warming pattern formation: sea surface temperature and rainfall. J. Clim. 23, 966–986 (2010).

    Article  Google Scholar 

  48. Dutheil, C. et al. Impact of temperature biases on climate change projections of the South Pacific Convergence Zone. Clim. Dyn. https://doi.org/10.1007/s00382-019-04692-6 (2019).

  49. Kang, S. M. & Held, I. M. Tropical precipitation, SSTs and the surface energy budget: a zonally symmetric perspective. Clim. Dyn. 38, 1917–1924 (2012).

    Article  Google Scholar 

  50. Xiang, B., Zhao, M., Ming, Y., Yu, W. & Kang, S. M. Contrasting impacts of radiative forcing in the Southern Ocean versus southern tropics on ITCZ position and energy transport in one GFDL climate model. J. Clim. 31, 5609–5628 (2018).

    Article  Google Scholar 

  51. Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).

    Article  Google Scholar 

  52. Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).

    Article  CAS  Google Scholar 

  53. Seth, A. et al. Enhanced spring convective barrier for monsoons in a warmer world? Climatic Change 104, 403–414 (2011).

    Article  Google Scholar 

  54. Seth, A. et al. CMIP5 projected changes in the annual cycle of precipitation in monsoon regions. J. Clim. 26, 7328–7351 (2013).

    Article  Google Scholar 

  55. Rodríguez-Fonseca, B. et al. Variability and predictability of West African droughts: a review on the role of sea surface temperature anomalies. J. Clim. 28, 4034–4060 (2015).

    Article  Google Scholar 

  56. D’Agostino, R., Bader, J., Bordoni, S., Ferreira, D. & Jungclaus, J. Northern Hemisphere monsoon response to mid-Holocene orbital forcing and greenhouse gas-induced global warming. Geophys. Res. Lett. 46, 1591–1601 (2019).

    Article  Google Scholar 

  57. Pascale, S., Carvalho, L. M. V., Adams, D. K., Castro, C. L. & Cavalcanti, I. F. A. Current and future variations of the monsoons of the Americas in a warming climate. Curr. Clim. Change Rep. 5, 125–144 (2019).

    Article  Google Scholar 

  58. Zilli, M. T., Carvalho, L. M. V. & Lintner, B. R. The poleward shift of South Atlantic convergence zone in recent decades. Clim. Dyn. 52, 2545–2563 (2019).

    Article  Google Scholar 

  59. Dunning, C. M., Black, E. & Allan, R. P. Later wet seasons with more intense rainfall over Africa under future climate change. J. Clim. 31, 9719–9738 (2018).

    Article  Google Scholar 

  60. Cook, K. H. & Vizy, E. K. Impact of climate change on mid-twenty-first century growing seasons in Africa. Clim. Dyn. 39, 2937–2955 (2012).

    Article  Google Scholar 

  61. Menon, A., Levermann, A., Schewe, J., Lehmann, J. & Frieler, K. Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth. Sys. Dyn. 4, 287–300 (2013).

    Article  Google Scholar 

  62. Sharmila, S., Joseph, S., Sahai, A. K., Abhilash, S. & Chattopadhyay, R. Future projection of Indian summer monsoon variability under climate change scenario: an assessment from CMIP5 climate models. Glob. Planet. Change 124, 62–78 (2015).

    Article  Google Scholar 

  63. Kooperman, G. J. et al. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat. Clim. Change 8, 434–440 (2018).

    Article  Google Scholar 

  64. Hwang, Y.-T., Xie, S.-P., Deser, C. & Kang, S. M. Connecting tropical climate change with Southern Ocean heat uptake. Geophys. Res. Lett. 44, 9449–9457 (2017).

    Article  Google Scholar 

  65. Frölicher, T. L. et al. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Clim. 28, 862–886 (2015).

    Article  Google Scholar 

  66. Roemmich, D. et al. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change 5, 240–254 (2015).

    Article  Google Scholar 

  67. Kang, S. M., Held, I. M., Frierson, D. M. W. & Zhao, M. The response of the ITCZ to extratropical thermal forcing: idealized slab–ocean experiments with a GCM. J. Clim. 21, 3521–3532 (2008).

    Article  Google Scholar 

  68. Moreno-Chamarro, E., Marshall, J. & Delworth, T. L. Linking ITCZ migrations to the AMOC and North Atlantic/Pacific SST decadal variability. J. Clim. 33, 893–905 (2020).

    Article  Google Scholar 

  69. Haywood, J. M., Jones, A., Bellouin, N. & Stephenson, D. Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat. Clim. Change 3, 660–665 (2013).

    Article  CAS  Google Scholar 

  70. Chiang, J. C. H. & Bitz, C. M. Influence of high latitude ice cover on the marine intertropical convergence zone. Clim. Dyn. 25, 477–496 (2005).

    Article  Google Scholar 

  71. Broccoli, A. J., Dahl, K. A. & Stouffer, R. J. Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett. 33, L01702 (2006).

    Article  Google Scholar 

  72. Frierson, D. M. W. & Hwang, Y.-T. Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Clim. 25, 720–733 (2012).

    Article  Google Scholar 

  73. Hwang, Y. & Frierson, D. Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl Acad. Sci. USA 110, 4935–4940 (2013).

    Article  CAS  Google Scholar 

  74. Green, B. & Marshall, J. Coupling of trade winds with ocean circulation damps ITCZ shifts. J. Clim. 30, 4395–4411 (2017).

    Article  Google Scholar 

  75. Yu, S. & Pritchard, M. S. A strong role for the AMOC in partitioning global energy transport and shifting ITCZ position in response to latitudinally discrete solar forcing in the CESM1.2. J. Clim. https://doi.org/10.1175/JCLI-D-18-0360.1 (2019).

  76. Boos, W. R. & Korty, R. L. Regional energy budget control of the intertropical convergence zone and application to mid-Holocene rainfall. Nat. Geosci. 9, 892–897 (2016).

    Article  CAS  Google Scholar 

  77. Adam, O., Schneider, T. & Brient, F. Regional and seasonal variations of the double-ITCZ bias in CMIP 5 models. Clim. Dyn. https://doi.org/10.1007/s00382-017-3909-1 (2018).

  78. Adam, O., Schneider, T., Enzel, Y. & Quade, J. Both differential and equatorial heating contributed to African monsoon variations during mid-Holocene. Earth Planet. Sci. Lett. 522, 20–29 (2019).

    Article  CAS  Google Scholar 

  79. Lintner, B. & Boos, W. Using atmospheric energy transport to quantitatively constrain South Pacific convergence zone shifts during ENSO. J. Clim. 32, 1839–1855 (2019).

    Article  Google Scholar 

  80. Feldl, N. & Bordoni, S. Characterizing the Hadley circulation through regional climate feedbacks. J. Clim. 29, 613–622 (2016).

    Article  Google Scholar 

  81. Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, 207–214 (2002).

    Article  CAS  Google Scholar 

  82. Cheng, W., Bitz, C. M. & Chiang, J. C. H. in Ocean Circulation: Mechanisms and Impacts (eds Schmittner, A. et al.) 295–314 (AGU, 2007).

  83. Drijfhout, S., van Oldenborgh, G. J. & Cimatoribus, A. Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J. Clim. 25, 8373–8379 (2012).

    Article  Google Scholar 

  84. Swart, N. C., Gille, S. T., Fyfe, J. C. & Gillet, N. P. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci. 11, 836–841 (2018).

    Article  CAS  Google Scholar 

  85. Deser, C., Tomas, R. A. & Sun, L. The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to Arctic Sea ice loss. J. Clim. 28, 2168–2186 (2015).

    Article  Google Scholar 

  86. Wei, H.‐H. & Bordoni, S. Energetic constraints on the intertropical convergence zone position in the observed seasonal cycle from Modern‐Era Retrospective Analysis for Research and Applications, Version 2 (MERRA‐2). Geophys. Res. Lett. 47, e2020GL088506 (2020).

  87. Tian, B. & Dong, X. The double‐ITCZ bias in CMIP3, CMIP5 and CMIP6 models based on annual mean precipitation. Geophys. Res. Lett. 47, e2020GL087232 (2020).

  88. Diffenbaugh, N. S. & Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Climatic Change 114, 813–822 (2012).

    Article  Google Scholar 

  89. Xu, L., Wang, A., Wang, D. & Wang, H. Hot spots of climate extremes in the future. J. Geophys. Res. Atmos. 124, 3035–3049 (2019).

    Article  Google Scholar 

  90. Hill, S. A. Theories for past and future monsoon rainfall changes. Curr. Clim. Change Rep. 5, 160–171 (2019).

    Article  Google Scholar 

  91. Kang, S. M., Shin, Y. & Xie, S. Extratropical forcing and tropical rainfall distribution: energetics framework and ocean Ekman advection. NPJ Clim. Atmos. Sci. 1, 20172 (2018).

    Article  Google Scholar 

  92. Biasutti, M. & Voigt, A. Seasonal and CO2-induced shifts of the ITCZ: testing energetic controls in idealized simulations with comprehensive models. J. Clim. 33, 2853–2870 (2020).

    Article  Google Scholar 

  93. Shonk, J. K. P. et al. Identifying causes of western Pacific ITCZ drift in ECMWF System 4 hindcasts. Clim. Dyn. 50, 939–954 (2018).

    Article  Google Scholar 

  94. Bain, C. L. et al. Detecting the ITCZ in instantaneous satellite data using spatiotemporal statistical modeling: ITCZ climatology in the east Pacific. J. Clim. https://doi.org/10.1175/2010JCLI3716.1 (2011).

  95. Hartmann, D. L. Global Physical Climatology 2nd edn (Elsevier, 2016).

  96. Ashouri, H. et al. PERSIANN-CDR: daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteor. Soc. 96, 69–83 (2015).

    Article  Google Scholar 

  97. Lee, H.-T. Climate Algorithm Theoretical Basis Document (C-ATBD): Outgoing Longwave Radiation (OLR)—Daily Climate Data Record (CDR) Program Document No. CDRP-ATBD-0526 (NOAA, 2014).

Download references

Acknowledgements

Partial support for this research was provided to E.F.-G., J.T.R. and P.S. by the National Science Foundation (NSF) under the TRIPODS+ programme (DMS-1839336). Moreover, the work of E.F.-G. was supported by NSF under the EAGER programme (grant ECCS-1839441) and by NASA’s Global Precipitation Measurement (GPM) programme (grant 80NSSC19K0684). J.T.R. received support from DOE’s Office of Science RUBISCO Science Focus Area and NASA’s IDS and CMS programmes. J.-Y.Y. and M.S.P. were supported by the NSF Climate and Large-scale Dynamics (CLD) programme under grants AGS-1833075, AGS-173416 and AGS-1912134. The work of P.S., M.S.P., P.A.L. and J.T.R. was also partially supported by NSF under the DGE-1633631 grant. S.Y. was supported by a generous gift to Yale from T. Sandoz. A research grant from UCI to advance these research ideas is also acknowledged. We thank the climate modelling groups around the world for producing and making their model outputs available. We also acknowledge the help from O. Adam and B. Lintner in discussing parts of this analysis.

Author information

Authors and Affiliations

Authors

Contributions

A.M. designed the study, performed the data analysis, and wrote the first draft of the manuscript. All authors contributed to the conceptualization and interpretation of the results and to extended discussions in the revising and finalizing stages of the manuscript.

Corresponding authors

Correspondence to Antonios Mamalakis or Efi Foufoula-Georgiou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Michael Byrne and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Discussion and Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamalakis, A., Randerson, J.T., Yu, JY. et al. Zonally contrasting shifts of the tropical rain belt in response to climate change. Nat. Clim. Chang. 11, 143–151 (2021). https://doi.org/10.1038/s41558-020-00963-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-020-00963-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing