Global multi-model projections of local urban climates

Abstract

Effective urban planning for climate-driven risks relies on robust climate projections specific to built landscapes. Such projections are absent because of a near-universal lack of urban representation in global-scale Earth system models. Here, we combine climate modelling and data-driven approaches to provide global multi-model projections of urban climates over the twenty-first century. The results demonstrate the inter-model robustness of specific levels of urban warming over certain regions under climate change. Under a high-emissions scenario, cities in the United States, Middle East, northern Central Asia, northeastern China and inland South America and Africa are estimated to experience substantial warming of more than 4 K—larger than regional warming—by the end of the century, with high inter-model confidence. Our findings highlight the critical need for multi-model global projections of local urban climates for climate-sensitive development and support green infrastructure intervention as an effective means of reducing urban heat stress on large scales.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Difference between projected urban warming and background regional warming for JJA.
Fig. 2: Multi-model ensemble mean urban warming for JJA under RCP 8.5.
Fig. 3: Multi-model ensemble mean urban warming for JJA under RCP 4.5.
Fig. 4: Multi-model mean urban relative humidity change for JJA.
Fig. 5: Multi-model mean urban evaporative cooling efficiency.

Data availability

All CMIP5 data used in this study are available at the CMIP5 archive via https://esgfnode.llnl.gov/projects/cmip5/ and the Climate Data Gateway at NCAR via https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CESM_CAM5_BGC_LE.html for RCP 8.5 and https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CESM_CAM5_BGC_ME.html for RCP 4.5. The output data from the emulator are available in the public repository—‘Illinois Data Bank’—via https://doi.org/10.13012/B2IDB-4585244_V1. Source data are provided with this paper.

Code availability

The R (https://www.R-project.org/) and NCL (The NCAR Command Language, https://doi.org/10.5065/D6WD3XH5) codes of the urban climate emulator are available on the NCAR Cheyenne cluster (https://doi.org/10.5065/D6RX99HX) and on Github (https://github.com/zhao-research-lab/urban_climate_emulator; https://doi.org/10.5281/zenodo.3893401). The CESM (used to perform the simulations) source code releases are available through the public GitHub repository (https://github.com/ESCOMP/CESM).

References

  1. 1.

    Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).

    CAS  Google Scholar 

  2. 2.

    Mora, C. et al. Global risk of deadly heat. Nat. Clim. Change 7, 501–506 (2017).

    Google Scholar 

  3. 3.

    Schneider, A., Friedl, M. A. & Potere, D. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 4, 044003 (2009).

    Google Scholar 

  4. 4.

    Heilig, G. K. World Urbanization Prospects: The 2011 Revision (United Nations, 2012).

  5. 5.

    Cao, C. et al. Urban heat islands in China enhanced by haze pollution. Nat. Commun. 7, 12509 (2016).

    CAS  Google Scholar 

  6. 6.

    Zhao, L. et al. Interactions between urban heat islands and heat waves. Environ. Res. Lett. 13, 034003 (2018).

    Google Scholar 

  7. 7.

    Baklanov, A. et al. From urban meteorology, climate and environment research to integrated city services. Urban Clim. 23, 330–341 (2018).

    Google Scholar 

  8. 8.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Google Scholar 

  9. 9.

    Knutti, R. & Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Change 3, 369–373 (2013).

    Google Scholar 

  10. 10.

    Tebaldi, C. & Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. R. Soc. A 365, 2053–2075 (2007).

    Google Scholar 

  11. 11.

    Krayenhoff, E. S., Moustaoui, M., Broadbent, A. M., Gupta, V. & Georgescu, M. Diurnal interaction between urban expansion, climate change and adaptation in US cities. Nat. Clim. Change 8, 1097–1103 (2018).

    CAS  Google Scholar 

  12. 12.

    Langendijk, G. S., Rechid, D. & Jacob, D. Urban areas and urban–rural contrasts under climate change: what does the EURO-CORDEX ensemble tell us?—Investigating near surface humidity in Berlin and its surroundings. Atmosphere 10, 730 (2019).

    Google Scholar 

  13. 13.

    Daniel, M. et al. Benefits of explicit urban parameterization in regional climate modeling to study climate and city interactions. Clim. Dyn. 52, 2745–2764 (2019).

    Google Scholar 

  14. 14.

    Li, D., Malyshev, S. & Shevliakova, E. Exploring historical and future urban climate in the Earth System Modeling framework: 1. Model development and evaluation. J. Adv. Model. Earth Syst. 8, 917–935 (2016).

    Google Scholar 

  15. 15.

    McCarthy, M. P., Best, M. J. & Betts, R. A. Climate change in cities due to global warming and urban effects. Geophys. Res. Lett. 37, L09705 (2010).

    Google Scholar 

  16. 16.

    Oleson, K. Contrasts between urban and rural climate in CCSM4 CMIP5 climate change scenarios. J. Clim. 25, 1390–1412 (2011).

    Google Scholar 

  17. 17.

    Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1108 (2009).

    Google Scholar 

  18. 18.

    Oleson, K. W., Anderson, G. B., Jones, B., McGinnis, S. A. & Sanderson, B. Avoided climate impacts of urban and rural heat and cold waves over the U.S. using large climate model ensembles for RCP8.5 and RCP4.5. Climatic Change 146, 377–392 (2018).

    CAS  Google Scholar 

  19. 19.

    Chapman, S., Watson, J. E. M., Salazar, A., Thatcher, M. & McAlpine, C. A. The impact of urbanization and climate change on urban temperatures: a systematic review. Landsc. Ecol. 32, 1921–1935 (2017).

    Google Scholar 

  20. 20.

    Hoornweg, D. & Pope, K. Population predictions for the world’s largest cities in the 21st century. Environ. Urban. https://doi.org/10.1177/0956247816663557 (2016).

  21. 21.

    Hurrell, J. W. et al. The Community Earth System Model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).

    Google Scholar 

  22. 22.

    Oleson, K., Bonan, G., Feddema, J., Vertenstein, M. & Kluzek, E. in Technical Description of an Urban Parameterization for the Community Land Model (CLMU) 169 (National Center for Atmospheric Research, 2010).

  23. 23.

    Zhao, L., Lee, X., Smith, R. B. & Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 511, 216–219 (2014).

    CAS  Google Scholar 

  24. 24.

    Demuzere, M. et al. Impact of urban canopy models and external parameters on the modelled urban energy balance in a tropical city. Q. J. R. Meteorol. Soc. 143, 1581–1596 (2017).

    Google Scholar 

  25. 25.

    Karsisto, P. et al. Seasonal surface urban energy balance and wintertime stability simulated using three land-surface models in the high-latitude city Helsinki. Q. J. R. Meteorol. Soc. 142, 401–417 (2016).

    Google Scholar 

  26. 26.

    Oleson, K. W., Bonan, G. B., Feddema, J., Vertenstein, M. & Grimmond, C. S. B. An urban parameterization for a global climate model. Part I: formulation and evaluation for two cities. J. Appl. Meteorol. Climatol. 47, 1038–1060 (2008).

    Google Scholar 

  27. 27.

    Demuzere, M., Oleson, K., Coutts, A. M., Pigeon, G. & van Lipzig, N. P. M. Simulating the surface energy balance over two contrasting urban environments using the community land model urban. Int. J. Climatol. 33, 3182–3205 (2013).

  28. 28.

    Demuzere, M., De Ridder, K. & Van Lipzig, N. P. M. Modeling the energy balance in Marseille: sensitivity to roughness length parameterizations and thermal admittance. J. Geophys. Res. Atmos. 113, D16120 (2008).

    Google Scholar 

  29. 29.

    Fitria, R., Kim, D., Baik, J. & Choi, M. Impact of biophysical mechanisms on urban heat island associated with climate variation and urban morphology. Sci. Rep. 9, 1–13 (2019).

    Google Scholar 

  30. 30.

    Fischer, E. M., Oleson, K. W. & Lawrence, D. M. Contrasting urban and rural heat stress responses to climate change. Geophys. Res. Lett. 39, L03705 (2012).

    Google Scholar 

  31. 31.

    Oleson, K. W., Bonan, G. B., Feddema, J. & Jackson, T. An examination of urban heat island characteristics in a global climate model. Int. J. Climatol. 31, 1848–1865 (2011).

    Google Scholar 

  32. 32.

    Argüeso, D., Evans, J. P., Fita, L. & Bormann, K. J. Temperature response to future urbanization and climate change. Clim. Dyn. 42, 2183–2199 (2014).

    Google Scholar 

  33. 33.

    Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108, 1–24 (1982).

    Google Scholar 

  34. 34.

    Oleson, K. W., Bonan, G. B., Feddema, J. & Vertenstein, M. An urban parameterization for a global climate model. Part II: sensitivity to input parameters and the simulated urban heat island in offline simulations. J. Appl. Meteorol. Climatol. 47, 1061–1076 (2008).

    Google Scholar 

  35. 35.

    Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).

    CAS  Google Scholar 

  36. 36.

    Markon, C. et al. in Fourth National Climate Assessment. Volume II. Impacts, Risks, and Adaptation in the United States, 1185–1241 (US Global Change Research Program, 2018); https://doi.org/10.7930/NCA4.2018.CH26

  37. 37.

    Li, J., Chen, Y. D., Gan, T. Y. & Lau, N.-C. Elevated increases in human-perceived temperature under climate warming. Nat. Clim. Change 8, 43–47 (2018).

    Google Scholar 

  38. 38.

    Willett, K. M., Gillett, N. P., Jones, P. D. & Thorne, P. W. Attribution of observed surface humidity changes to human influence. Nature 449, 710–716 (2007).

    CAS  Google Scholar 

  39. 39.

    Luo, M. & Lau, N.-C. Urban expansion and drying climate in an urban agglomeration of east China. Geophys. Res. Lett. 46, 6868–6877 (2019).

    Google Scholar 

  40. 40.

    Lokoshchenko, M. A. Urban heat island and urban dry island in Moscow and their centennial changes. J. Appl. Meteorol. Climatol. 56, 2729–2745 (2017).

    Google Scholar 

  41. 41.

    Moriwaki, R., Watanabe, K. & Morimoto, K. Urban dry island phenomenon and its impact on cloud base level. J. Jpn. Soc. Civil Eng. 1, 521–529 (2013).

    Google Scholar 

  42. 42.

    Brutsaert, W. Evaporation into the Atmosphere: Theory, History and Applications (Springer, 1982).

  43. 43.

    Zhao, L., Lee, X. & Schultz, N. M. A wedge strategy for mitigation of urban warming in future climate scenarios. Atmos. Chem. Phys. 17, 9067–9080 (2017).

    CAS  Google Scholar 

  44. 44.

    Grimmond, C. S. B. et al. The international urban energy balance models comparison project: first results from phase 1. J. Appl. Meteorol. Climatol. 49, 1268–1292 (2010).

    Google Scholar 

  45. 45.

    Grimmond, C. S. B. et al. Initial results from Phase 2 of the international urban energy balance model comparison. Int. J. Climatol. 31, 244–272 (2011).

    Google Scholar 

  46. 46.

    Matte, D., Larsen, M. A. D., Christensen, O. B. & Christensen, J. H. Robustness and scalability of regional climate projections over europe. Front. Environ. Sci. 6, 163 (2019).

    Google Scholar 

  47. 47.

    Christensen, J. H., Larsen, M. A. D., Christensen, O. B., Drews, M. & Stendel, M. Robustness of european climate projections from dynamical downscaling. Clim. Dyn. 53, 4857–4869 (2019).

    Google Scholar 

  48. 48.

    Gromke, C. et al. CFD analysis of transpirational cooling by vegetation: case study for specific meteorological conditions during a heat wave in Arnhem, Netherlands. Build. Environ. 83, 11–26 (2015).

    Google Scholar 

  49. 49.

    Middel, A., Chhetri, N. & Quay, R. Urban forestry and cool roofs: assessment of heat mitigation strategies in Phoenix residential neighborhoods. Urban For. Urban Green. 14, 178–186 (2015).

    Google Scholar 

  50. 50.

    Huang, H.-Y., Margulis, S. A., Chu, C. R. & Tsai, H.-C. Investigation of the impacts of vegetation distribution and evaporative cooling on synthetic urban daytime climate using a coupled LES—LSM model. Hydrol. Process. 25, 1574–1586 (2011).

    Google Scholar 

  51. 51.

    Oleson, K. et al. in Technical Description of Version 4.0 of the Community Land Model (CLM) 257 (National Center for Atmospheric Research, 2010).

  52. 52.

    Jackson, T. L., Feddema, J. J., Oleson, K. W., Bonan, G. B. & Bauer, J. T. Parameterization of urban characteristics for global climate modeling. Ann. Assoc. Am. Geogr. 100, 848–865 (2010).

    Google Scholar 

  53. 53.

    Zhang, J. C., Zhang, K., Liu, J. F. & Ban-Weiss, G. Revisiting the climate impacts of cool roofs around the globe using an Earth system model. Environ. Res. Lett. 11, 084014 (2016).

    Google Scholar 

  54. 54.

    Hu, A. et al. Impact of solar panels on global climate. Nat. Clim. Change 6, 290–294 (2016).

    Google Scholar 

  55. 55.

    Sanderson, B. M., Oleson, K. W., Strand, W. G., Lehner, F. & O'Neill, B. C. A new ensemble of GCM simulations to assess avoided impacts in a climate mitigation scenario. Climatic Change 146, 303–318 (2018).

    Google Scholar 

  56. 56.

    Kay, J. E. et al. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    Google Scholar 

  57. 57.

    Kusaka, H., Kondo, H., Kikegawa, Y. & Kimura, F. A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Boundary Layer Meteorol. 101, 329–358 (2001).

    Google Scholar 

  58. 58.

    Fowler, H. J., Blenkinsop, S. & Tebaldi, C. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. 27, 1547–1578 (2007).

    Google Scholar 

  59. 59.

    Vaittinada Ayar, P. et al. Intercomparison of statistical and dynamical downscaling models under the EURO- and MED-CORDEX initiative framework: present climate evaluations. Clim. Dyn. 46, 1301–1329 (2016).

    Google Scholar 

  60. 60.

    Tang, J. et al. Statistical downscaling and dynamical downscaling of regional climate in China: present climate evaluations and future climate projections. J. Geophys. Res. Atmos. 121, 2110–2129 (2016).

    Google Scholar 

  61. 61.

    Murphy, J. Predictions of climate change over Europe using statistical and dynamical downscaling techniques. Int. J. Climatol. 20, 489–501 (2000).

    Google Scholar 

  62. 62.

    Spak, S., Holloway, T., Lynn, B. & Goldberg, R. A comparison of statistical and dynamical downscaling for surface temperature in North America. J. Geophys. Res. Atmos. 112, D08101 (2007).

    Google Scholar 

  63. 63.

    Fowler, H. J. & Kilsby, C. G. Precipitation and the North Atlantic Oscillation: a study of climatic variability in northern England. Int. J. Climatol. 22, 843–866 (2002).

    Google Scholar 

  64. 64.

    Wilby, R. L. Statistical downscaling of daily precipitation using daily airflow and seasonal teleconnection indices. Clim. Res. 10, 163–178 (1998).

    Google Scholar 

  65. 65.

    Slonosky, V. C., Jones, P. D. & Davies, T. D. Atmospheric circulation and surface temperature in Europe from the 18th century to 1995. Int. J. Climatol. 21, 63–75 (2001).

    Google Scholar 

  66. 66.

    Fischer, E. M. & Knutti, R. Robust projections of combined humidity and temperature extremes. Nat. Clim. Change 3, 126–130 (2013).

    Google Scholar 

  67. 67.

    Epstein, Y. & Moran, D. S. Thermal comfort and the heat stress indices. Ind. Health 44, 388–398 (2006).

    Google Scholar 

  68. 68.

    Buzan, J. R., Oleson, K. & Huber, M. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geosci. Model Dev. 8, 151–170 (2015).

    Google Scholar 

  69. 69.

    Martilli, A., Krayenhoff, E. S. & Nazarian, N. Is the urban heat island intensity relevant for heat mitigation studies? Urban Clim. 31, 100541 (2020).

    Google Scholar 

  70. 70.

    Stull, R. Wet-bulb temperature from relative humidity and air temperature. J. Appl. Meteorol. Climatol. 50, 2267–2269 (2011).

    Google Scholar 

Download references

Acknowledgements

We thank the National Center for Atmospheric Research (NCAR) for supercomputing and data storage resources, including the Cheyenne supercomputer (https://doi.org/10.5065/D6RX99HX), which were provided by the Computational and Information Systems Laboratory (CISL) at NCAR. L.Z. and M.O. acknowledge the support from the High Meadows Foundation. K.O. acknowledges support by the US National Science Foundation (NSF) under grant no. AGS-1243095, and by NCAR, which is a major facility sponsored by the NSF under cooperative agreement no. 1852977. E.B.Z. acknowledges support by the Army Research Office under contract no. W911NF2010216 (program manager J. Barzyk), and the NSF under grant no. ICER 1664091 and SRN cooperative agreement no. 1444758. Q.Z. is supported by the Reducing Uncertainties in Biogeochemical Interactions through Synthesis and Computation (RUBISCO) Scientific Focus Area, Office of Biological and Environmental Research of the U.S. Department of Energy Office of Science.

Author information

Affiliations

Authors

Contributions

L.Z. conceptualized the research and designed the emulator modelling framework; L.Z. developed the reduced-order emulator with contributions from K.O., A.B. and C.C.; K.O. and L.Z. conducted the CESM simulations; L.Z. performed the data analysis; K.O., E.B.Z. and M.O. contributed ideas to the data analysis; L.Z., K.O. and E.S.K. performed the model validation; L.Z. drafted the manuscript, with discussions and contributions from K.O., E.B.Z., E.S.K., M.O. and other co-authors.

Corresponding author

Correspondence to Lei Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Joshua Hacker, Gaby Langendijk and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison of 2000–2009 JJA (June – August) distributions of diurnal average (Ta), minimum (Tmin) and maximum (Tmax) 2 m urban air temperature between CLMU (red), WRF (blue) and PRISM (green).

Center bar represent the median, box edges the 25th and 75th percentiles, and error bars the 1st and 99th percentiles. PHX = Phoenix; LAX = Los Angeles; CHI = Chicago; DNV = Denver; POR = Portland; BAL = Baltimore; MIA = Miami; DAL = Dallas; BOS = Boston; ATL = Atlanta. Source data

Extended Data Fig. 2 Comparison of urban warming projection of diurnal average temperature between CESM and WRF-SLUCM simulation for season JJA (June – August) in 2090 – 2099 relative to 2000 – 2009 under RCP 8.5.

WRF-SLUCM dynamic downscaling simulation (forced by a CESM-RCP8.5 meteorology) was conducted in ref. 11. a, WRF-SLUCM projected urban warming in WRF’s original 20 km grids; b, CESM projected urban warming in the CESM grids (0.9° latitude × 1.25° longitude); c, WRF-SLUCM projected urban warming in the aggregated CESM grids (0.9° latitude × 1.25° longitude); d, difference in projected urban warming between CESM and WRF-SLUCM in the CESM grids. Source data

Extended Data Fig. 3 Average root-mean-square-error (RMSE) in urban temperature and RH validation of the emulator across 5 CESM ensemble member runs (member #2 - #6).

The ‘error’ in RMSE denotes the difference between monthly temperatures or RH dynamically modeled by the CESM ensemble member and the ones modeled by the emulator. The average RMSE was calculated based on the 5 CESM ensemble member runs from 2006 to 2100 (that is 95 years). a-d: RCP 8.5; e-h: RCP 4.5. a and e: RMSE in diurnal average temperature Ta; b and f: RMSE in diurnal maximum temperature Tmax; c and g: RMSE in diurnal minimum temperature Tmin; d and h: RMSE in urban relative humidity RH. Source data

Extended Data Fig. 4 Comparison of CMIP5 multi-model mean urban warming (ΔTurban) and background regional warming (ΔTbackground) for season JJA (June – August) in 2091 – 2100 relative to 2006 – 2015.

Δ refers to changes between end of the century and beginning of the century, that is (2091 to 2100) − (2006 to 2015); a, RCP 8.5; b, RCP 4.5. Source data

Extended Data Fig. 5 Multi-model mean urban warming for season DJF (December – February) in 2091 – 2100 relative to 2006 – 2015.

a–c: RCP 8.5; d-f: RCP 4.5. a and d: urban warming in diurnal average temperature Ta; b and e: in diurnal maximum temperature Tmax; c and f: in diurnal minimum temperature Tmin. Stippling indicates substantial change (ΔT ≥ 4K under RCP 8.5 or ΔT ≥ 1.5K under RCP 4.5) with high inter-model robustness (SNR > 2.5). Source data

Extended Data Fig. 6 Inter-model robustness of urban temperature projections measured by signal-to-noise ratio (SNR).

ad, RCP 8.5; e-h, RCP 4.5. a, b, e and f: season JJA (June – August); c, d, g and h: season DJF (December – February); a, c, e and g: projection in diurnal maximum temperature Tmax; b, d, f and h: projection in diurnal minimum temperature Tmin. Source data

Extended Data Fig. 7 Multi-model mean urban specific humidity (Q) change for season JJA (June – August) in 2091 – 2100 relative to 2006 – 2015.

a, RCP 8.5; b, RCP 4.5. Source data

Extended Data Fig. 8 Multi-model mean urban relative humidity (RH) change for season DJF (December – February) in 2091 – 2100 relative to 2006 – 2015.

a, RCP 8.5; b, RCP 4.5. Source data

Extended Data Fig. 9 Inter-model robustness of urban RH projections measured by signal-to-noise ratio (SNR).

a,b: RCP 8.5; c,d: RCP 4.5. a and c: season JJA (June – August); b and d: season DJF (December – February). Source data

Extended Data Fig. 10 Multi-model mean of urban Δ(HITa) for season JJA (June – August) in 2091 – 2100 relative to 2006 – 2015.

a: RCP 8.5; b: RCP 4.5. Stippling indicates substantial change (Δ(HITa) > 3 K under RCP8.5 or Δ(HITa) > 1.5 K under RCP4.5) with high inter-model robustness (SNR>2.5). Source data

Supplementary information

Supplementary Information

Supplementary Table 1.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Source Data Extended Data Fig. 10

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Oleson, K., Bou-Zeid, E. et al. Global multi-model projections of local urban climates. Nat. Clim. Chang. 11, 152–157 (2021). https://doi.org/10.1038/s41558-020-00958-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing