Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stringent mitigation substantially reduces risk of unprecedented near-term warming rates

Abstract

Following the Paris Agreement, many countries are enacting targets to achieve net-zero GHG emissions. Stringent mitigation will have clear societal benefits in the second half of this century by limiting peak warming and stabilizing climate. However, the near-term benefits of mitigation are generally thought to be less clear because forced surface temperature trends can be masked by internal variability. Here we use observationally constrained projections from the latest comprehensive climate models and a simple climate model emulator to show that pursuing stringent mitigation consistent with holding long-term warming below 1.5 °C reduces the risk of unprecedented warming rates in the next 20 years by a factor of 13 compared with a no mitigation scenario, even after accounting for internal variability. Therefore, in addition to long-term benefits, stringent mitigation offers substantial near-term benefits by offering societies and ecosystems a greater chance to adapt to and avoid the worst climate change impacts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Near-term (2021–2040) GSAT trends and anomalies relative to the near-present-day (1995–2014) baseline.
Fig. 2: The effect of mitigation versus no mitigation on near-term (2021–2040) GSAT trend distributions from FaIR.
Fig. 3: GSAT trends from FaIR starting in 2021 for different end years or trend lengths.

Data availability

The data that support the findings of this study are available at https://github.com/Priestley-Centre/Near_term_warming with the identifier https://doi.org/10.5281/zenodo.4252506 (ref. 86). This repository includes the FaIR simulation data, the constrained CMIP6 projections, the observation-based data and the observation-based estimates of internal variability (in fully processed form only). The SSP emissions datasets used in the FaIR simulations were downloaded from https://www.rcmip.org/, and the NDCs emissions dataset was provided by J. Rogelj. The constrained CMIP6 projections are based on ref. 17 and used surface air temperature data downloaded from ESGF (4 December 2019). The raw data used to calculate the observation-based estimates of internal variability are based on ref. 19 and were provided by K. Haustein. The surface air temperature data for the CMIP6 pre-industrial control simulations were obtained from the JASMIN/CEDA archive (29 July 2020). Further details of any CMIP6 data used are given in Supplementary Table 3 (refs. 87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155).

Code availability

The FaIR model is available at https://doi.org/10.5281/zenodo.3588880 (ref. 156). FaIR version 1.5 is used for all simulations in this paper. The code used to set up the FaIR simulations, analyse the data and produce the figures is available at https://github.com/Priestley-Centre/Near_term_warming with the identifier https://doi.org/10.5281/zenodo.4252506 (ref. 86). Python/Matplotlib was used for all coding and data visualization; for some figures, the vector graphics editor Inkscape (available at https://inkscape.org/) was used to combine different figure parts into one file.

References

  1. 1.

    IPCC: Summary for Policymakers. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  2. 2.

    Kirtman, B. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 11 (IPCC, Cambridge Univ. Press, 2013).

  3. 3.

    Tebaldi, C. & Friedlingstein, P. Delayed detection of climate mitigation benefits due to climate inertia and variability. Proc. Natl Acad. Sci. USA 110, 17229–17234 (2013).

    CAS  Google Scholar 

  4. 4.

    Marotzke, J. Quantifying the irreducible uncertainty in near‐term climate projections. WIREs Clim. Change 10, e563 (2019).

    Google Scholar 

  5. 5.

    Maher, N., Lehner, F. & Marotzke, J. Quantifying the role of internal variability in the temperature we expect to observe in the coming decades. Environ. Res. Lett. 15, 054014 (2020).

    Google Scholar 

  6. 6.

    Samset, B. H., Fuglestvedt, J. S. & Lund, M. T. Delayed emergence of a global temperature response after emission mitigation. Nat. Commun. 11, 3261 (2020).

    CAS  Google Scholar 

  7. 7.

    Challinor, A. et al. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Change 6, 954–958 (2016).

    Google Scholar 

  8. 8.

    Gersonius, B. et al. Managing the flooding system’s resiliency to climate change. Proc. Inst. Civ. Eng. Eng. Sustain. 163, 15–22 (2010).

    Google Scholar 

  9. 9.

    Allen, M. R. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 1 (IPCC, WMO, 2018).

  10. 10.

    Schleussner, C.-F. et al. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Change 6, 827–835 (2016).

    Google Scholar 

  11. 11.

    Rogelj, J., Schleussner, C.‐F. & Hare, W. Getting it right matters: temperature goal interpretations in geoscience research. Geophys. Res. Lett. 44, 10662–10665 (2017).

    Google Scholar 

  12. 12.

    Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1108 (2009).

    Google Scholar 

  13. 13.

    Lehner, F. et al. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dyn. 11, 491–508 (2020).

    Google Scholar 

  14. 14.

    Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    CAS  Google Scholar 

  15. 15.

    Medhaug, I., Stolpe, M. B., Fischer, E. M. & Knutti, R. Reconciling controversies about the ‘global warming hiatus’. Nature 545, 41–47 (2017).

    CAS  Google Scholar 

  16. 16.

    Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).

    Google Scholar 

  17. 17.

    Tokarska, K. B. et al. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 6, eaaz9549 (2020).

    CAS  Google Scholar 

  18. 18.

    Smith, C. J. et al. FAIR v1.3: a simple emissions-based impulse response and carbon cycle model. Geosci. Model Dev. 11, 2273–2297 (2018).

    CAS  Google Scholar 

  19. 19.

    Haustein, K. et al. A limited role for unforced internal variability in twentieth-century warming. J. Clim. 32, 4893–4917 (2019).

    Google Scholar 

  20. 20.

    Rogelj, J. et al. Understanding the origin of Paris Agreement emission uncertainties. Nat. Commun. 8, 15748 (2017).

    CAS  Google Scholar 

  21. 21.

    Rogelj, J., den Elzen, M., Huppmann, D. & Luderer, G. in Emissions Gap Report 2019 (eds Olhoff, A. & Christensen, J. M.) Ch. 3 (United Nations Environment Programme, 2019).

  22. 22.

    Vrontisi, Z. et al. Enhancing global climate policy ambition towards a 1.5 °C stabilization: a short-term multi-model assessment. Environ. Res. Lett. 13, 044039 (2018).

    Google Scholar 

  23. 23.

    Hausfather, Z. & Peters, G. P. Emissions—the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).

    CAS  Google Scholar 

  24. 24.

    Leemans, R. & Eickhout, B. Another reason for concern: regional and global impacts on ecosystems for different levels of climate change. Glob. Environ. Change 14, 219–228 (2004).

    Google Scholar 

  25. 25.

    Neilson, R. P. Transient ecotone response to climatic change: some conceptual and modelling approaches. Ecol. Appl. 3, 385–395 (1993).

    Google Scholar 

  26. 26.

    Ciavarella, A., Stott, P. & Lowe, J. Early benefits of mitigation in risk of regional climate extremes. Nat. Clim. Change 7, 326–330 (2017).

    Google Scholar 

  27. 27.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Google Scholar 

  28. 28.

    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

    CAS  Google Scholar 

  29. 29.

    Lehner, F., Deser, C. & Sanderson, B. M. Future risk of record-breaking summer temperatures and its mitigation. Clim. Change 146, 363–375 (2018).

    Google Scholar 

  30. 30.

    Tebaldi, C. & Wehner, M. F. Benefits of mitigation for future heat extremes under RCP4.5 compared to RCP8.5. Clim. Change 146, 349–361 (2018).

    Google Scholar 

  31. 31.

    Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 3 (IPCC, WMO, 2018).

  32. 32.

    Mahlstein, I., Knutti, R., Solomon, S. & Portmann, R. W. Early onset of significant local warming in low latitude countries. Environ. Res. Lett. 6, 034009 (2011).

    Google Scholar 

  33. 33.

    Coumou, D. & Robinson, A. Historic and future increase in the global land area affected by monthly heat extremes. Environ. Res. Lett. 8, 034018 (2013).

    Google Scholar 

  34. 34.

    Dosio, A., Mentaschi, L., Fischer, E. M. & Wyser, K. Extreme heat waves under 1.5 °C and 2 °C global warming. Environ. Res. Lett. 13, 054006 (2018).

    Google Scholar 

  35. 35.

    Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016).

    CAS  Google Scholar 

  36. 36.

    Wartenburger, R. et al. Changes in regional climate extremes as a function of global mean temperature: an interactive plotting framework. Geosci. Model Dev. 10, 3609–3634 (2017).

    Google Scholar 

  37. 37.

    Seneviratne, S. I. et al. Climate extremes, land–climate feedbacks and land-use forcing at 1.5 °C. Phil. Trans. R. Soc. A 376, 20160450 (2018).

    Google Scholar 

  38. 38.

    Schleussner, C.-F. et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth Syst. Dyn. 7, 327–351 (2016).

    Google Scholar 

  39. 39.

    Byers, E. Global exposure and vulnerability to multi-sector development and climate change hotspots. Environ. Res. Lett. 13, 055012 (2018).

    Google Scholar 

  40. 40.

    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Google Scholar 

  41. 41.

    IPCC Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  42. 42.

    Dessler, A. E. & Forster, P. M. An estimate of equilibrium climate sensitivity from interannual variability. J. Geophys. Res. Atmos. 123, 8634–8645 (2018).

    Google Scholar 

  43. 43.

    Etminan, M., Myhre, G., Highwood, E. J. & Shine, K. P. Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. Geophys. Res. Lett. 43, 12614–12623 (2016).

    CAS  Google Scholar 

  44. 44.

    Smith, C. J. et al. Understanding rapid adjustments to diverse forcing agents. Geophys. Res. Lett. 45, 12023–12031 (2018).

    CAS  Google Scholar 

  45. 45.

    Flato, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 9 (IPCC, Cambridge Univ. Press, 2013).

  46. 46.

    Pfister, P. L. & Stocker, T. F. The realized warming fraction: a multi-model sensitivity study. Environ. Res. Lett. 13, 124024 (2018).

    CAS  Google Scholar 

  47. 47.

    Nicholls, Z. R. et al. Reduced complexity model intercomparison project phase 1: protocol, results and initial observations. Geosci. Model Dev. Discuss. https://doi.org/10.5194/gmd-2019-375 (2020).

  48. 48.

    van Marle, M. J. E. et al. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev. 10, 3329–3357 (2017).

    Google Scholar 

  49. 49.

    Hoesly, R. M. et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 11, 369–408 (2018).

    CAS  Google Scholar 

  50. 50.

    Meinshausen, M. et al. Historical greenhouse gas concentrations for climate modelling (CMIP6). Geosci. Model Dev. 10, 2057–2116 (2017).

    CAS  Google Scholar 

  51. 51.

    Haustein, K. et al. A real-time global warming index. Sci. Rep. 7, 15417 (2017).

    CAS  Google Scholar 

  52. 52.

    Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land–ocean surface temperatures analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

    Google Scholar 

  53. 53.

    Vose, R. S. et al. NOAA’s merged land–ocean surface temperature analysis. Bull. Am. Meteorol. Soc. 93, 1677–1685 (2012).

    Google Scholar 

  54. 54.

    Rogelj, J. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 2 (IPCC, WMO, 2018).

  55. 55.

    Millar, R. J., Nicholls, Z. R., Friedlingstein, P. & Allen, M. R. A modified impulse–response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions. Atmos. Chem. Phys. 17, 7213–7228 (2017).

    CAS  Google Scholar 

  56. 56.

    Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 8 (IPCC, Cambridge Univ. Press, 2013).

  57. 57.

    Hodnebrog, Ø. et al. Global warming potentials and radiative efficiencies of halocarbons and related compounds: a comprehensive review. Rev. Geophys. 51, 300–378 (2013).

    Google Scholar 

  58. 58.

    Stevenson, D. S. et al. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 13, 3063–3085 (2013).

    Google Scholar 

  59. 59.

    Myhre, G. et al. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys. 13, 1853–1877 (2013).

    CAS  Google Scholar 

  60. 60.

    Ghan, S. J. et al. A simple model of global aerosol indirect effects. J. Geophys. Res. Atmos. 118, 6688–6707 (2013).

    Google Scholar 

  61. 61.

    Flynn, C. M. & Mauritsen, T. On the climate sensitivity and historical warming evolution in recent coupled model ensembles. Atmos. Chem. Phys. Discuss. 20, 7829–7842 (2020).

    CAS  Google Scholar 

  62. 62.

    Prather, M. et al. (eds) in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Annex II (IPCC, Cambridge Univ. Press, 2013).

  63. 63.

    Matthes, K. et al. Solar forcing for CMIP6 (v3.2). Geosci. Model Dev. 10, 2247–2302 (2017).

    CAS  Google Scholar 

  64. 64.

    Bellouin, N. et al. Bounding global aerosol radiative forcing of climate change. Rev. Geophys. 57, e2019RG000660 (2019).

    Google Scholar 

  65. 65.

    Forster, P. M., Maycock, A. C., McKenna, C. M. & Smith, C. J. Latest climate models confirm need for urgent mitigation. Nat. Clim. Change 10, 7–10 (2020).

    Google Scholar 

  66. 66.

    Jiménez-de-la-Cuesta, D. & Mauritsen, T. Emergent constraints on Earth’s transient and equilibrium response to doubled CO2 from post-1970s global warming. Nat. Geosci. 12, 902–905 (2019).

    Google Scholar 

  67. 67.

    Nijsse, F. J. M. M., Cox, P. M. & Williamson, M. S. Emergent constraints on transient climate response (TCR) and equilibrium climate sensitivity (ECS) from historical warming in CMIP5 and CMIP6 models. Earth Syst. Dyn. 11, 737–750 (2020).

    Google Scholar 

  68. 68.

    Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset. J. Geophys. Res. 117, D08101 (2012).

    Google Scholar 

  69. 69.

    Rohde, R. et al. A new estimate of the average Earth surface land temperature spanning 1753 to 2011. Geoinform. Geostat. Overv. 1, 1000101 (2013).

    Google Scholar 

  70. 70.

    Kennedy, J. J., Rayner, N. A., Smith, R. O., Saunby, M. & Parker, D. E. Reassessing biases and other uncertainties in sea-surface temperature observations since 1850. 1. Measurement and sampling errors. J. Geophys. Res. 116, D14103 (2011).

    Google Scholar 

  71. 71.

    Kennedy, J. J., Rayner, N. A., Smith, R. O., Saunby, M. & Parker, D. E. Reassessing biases and other uncertainties in sea-surface temperature observations since 1850. 2. Biases and homogenisation. J. Geophys. Res. 116, D14104 (2011).

    Google Scholar 

  72. 72.

    Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).

    Google Scholar 

  73. 73.

    Cowtan, K. D. & Way, R. G. Global Temperature Reconstructions Version 2 (University of York, 2020); https://doi.org/10.15124/20ee85c3-f53c-4ab6-8e50-270b0ddd3686

  74. 74.

    Lenssen, N. et al. Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos. 124, 6307–6326 (2019).

    Google Scholar 

  75. 75.

    GISTEMP Team GISS Surface Temperature Analysis (GISTEMP) Version 4 (NASA Goddard Institute for Space Studies, 2020); https://data.giss.nasa.gov/gistemp/

  76. 76.

    Jones, P. D. et al. Hemispheric and large-scale land surface air temperature variations: an extensive revision and an update to 2010. J. Geophys. Res. 117, D05127 (2012).

    Google Scholar 

  77. 77.

    Menne, M. J., Williams, C. N., Gleason, B. E., Rennie, J. J. & Lawrimore, J. H. The global historical climatology network monthly temperature dataset, version 4. J. Clim. 31, 9835–9854 (2018).

    Google Scholar 

  78. 78.

    Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Google Scholar 

  79. 79.

    Tokarska, K. B. et al. Recommended temperature metrics for carbon budget estimates, model evaluation and climate policy. Nat. Geosci. 12, 964–971 (2019).

    CAS  Google Scholar 

  80. 80.

    Cowtan, K. et al. Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures. Geophys. Res. Lett. 42, 6526–6534 (2015).

    Google Scholar 

  81. 81.

    Richardson, M., Cowtan, K. & Millar, R. J. Global temperature definition affects achievement of long-term climate goals. Environ. Res. Lett. 13, 054004 (2018).

    Google Scholar 

  82. 82.

    Rogelj, J., Forster, P. M., Kriegler, E., Smith, C. J. & Séférian, R. Estimating and tracking the remaining carbon budget for stringent climate targets. Nature 571, 335–342 (2019).

    CAS  Google Scholar 

  83. 83.

    Kennedy, J. J., Rayner, N. A., Atkinson, C. P. & Killick, R. E. An ensemble data set of sea-surface temperature change from 1850: the Met Office Hadley Centre HadSST.4.0.0.0 data set. J. Geophys. Res. Atmos. 124, 7719–7763 (2019).

    Google Scholar 

  84. 84.

    Titchner, H. & Rayner, N. The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2. 1. Sea ice concentrations. J. Geophys. Res. 119, 2864–2889 (2014).

    Google Scholar 

  85. 85.

    Donlon, C. J. et al. The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens. Environ. 116, 140–158 (2012).

    Google Scholar 

  86. 86.

    McKenna, C. M., Forster, P. M., Maycock, A. C., Smith, C. J. & Tokarska, K. B. Priestley-Centre/Near_term_warming Version 1.2 (Zenodo, 2020); https://doi.org/10.5281/zenodo.4252506

  87. 87.

    Dix, M. et al. CSIRO-ARCCSS ACCESS-CM2 Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.4311

  88. 88.

    Ziehn, T. et al. CSIRO ACCESS-ESM1.5 Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.4312

  89. 89.

    Semmler, T. et al. AWI AWI-CM1.1MR Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.2777

  90. 90.

    Danek, C. et al. AWI AWI-ESM1.1LR Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2020); https://doi.org/10.22033/ESGF/CMIP6.9335

  91. 91.

    Wu, T. et al. BCC BCC-CSM2MR Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.3016

  92. 92.

    Xin, X. et al. BCC BCC-CSM2MR Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.1732

  93. 93.

    Zhang, J. et al. BCC BCC-ESM1 Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.3017

  94. 94.

    Rong, X. CAMS CAMS_CSM1.0 Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.9797

  95. 95.

    Rong, X. CAMS CAMS-CSM1.0 Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.11004

  96. 96.

    Swart, N. C. et al. CCCma CanESM5 Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.3673

  97. 97.

    Swart, N. C. et al. CCCma CanESM5 Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.1317

  98. 98.

    Danabasoglu, G., Lawrence, D., Lindsay, K., Lipscomb, W. & Strand, G. NCAR CESM2 Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.7733

  99. 99.

    Danabasoglu, G. NCAR CESM2 Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.2201

  100. 100.

    Danabasoglu, G. NCAR CESM2-FV2 Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.11301

  101. 101.

    Danabasoglu, G. NCAR CESM2-WACCM Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.10094

  102. 102.

    Danabasoglu, G. NCAR CESM2-WACCM Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.10026

  103. 103.

    Danabasoglu, G. NCAR CESM2-WACCM-FV2 Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.11302

  104. 104.

    Voldoire, A. CMIP6 Simulations of the CNRM-CERFACS Based on CNRM-CM6-1 Model for CMIP Experiment piControl Version 20200729 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.4163

  105. 105.

    Voldoire, A. CNRM-CERFACS CNRM-CM6-1 Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.1384

  106. 106.

    Voldoire, A. CNRM-CERFACS CNRM-CM6-1-HR Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.4164

  107. 107.

    Seferian, R. CNRM-CERFACS CNRM-ESM2-1 Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.4165

  108. 108.

    Seferian, R. CNRM-CERFACS CNRM-ESM2-1 Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.1395

  109. 109.

    Bader, D. C., Leung, R., Taylor, M. & McCoy, R. B. E3SM-Project E3SM1.0 Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.4499 (2018).

  110. 110.

    Bader, D. C., Leung, R., Taylor, M. & McCoy, R. B. E3SM-Project E3SM1.1 Model Output Prepared for CMIP6 CMIP piControl. Version 20200729. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.11489

  111. 111.

    Bader, D. C., Leung, R., Taylor, M. & McCoy, R. B. E3SM-Project E3SM1.1ECA Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.11490

  112. 112.

    EC-Earth Consortium (EC-Earth) EC-Earth-Consortium EC-Earth3 Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.251

  113. 113.

    EC-Earth Consortium (EC-Earth) EC-Earth-Consortium EC-Earth3-Veg Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.727

  114. 114.

    Yu, Y. CAS FGOALS-f3-L Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.3447

  115. 115.

    Yu, Y. CAS FGOALS-f3-L Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.2046

  116. 116.

    Li, L. CAS FGOALS-g3 Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.3448

  117. 117.

    Song, Z. et al. FIO-QLNM FIO-ESM2.0 Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.9205

  118. 118.

    Guo, H. et al. NOAA-GFDL GFDL-CM4 Model Output piControl Version 20200729 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.8666

  119. 119.

    Guo, H. et al. NOAA-GFDL GFDL-CM4 Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.9242

  120. 120.

    Krasting, J. P. et al. NOAA-GFDL GFDL-ESM4 Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.8669

  121. 121.

    John, J. G. et al. NOAA-GFDL GFDL-ESM4 Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.1414

  122. 122.

    NASA Goddard Institute for Space Studies (NASA/GISS) NASA-GISS GISS-E2.1G Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.7380

  123. 123.

    NASA Goddard Institute for Space Studies (NASA/GISS) NASA-GISS GISS-E2-1-G-CC Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.11856

  124. 124.

    NASA Goddard Institute for Space Studies (NASA/GISS) NASA-GISS GISS-E2.1H Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.7381

  125. 125.

    NASA Goddard Institute for Space Studies (NASA/GISS) NASA-GISS GISS-E2-2-G Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.7382

  126. 126.

    Ridley, J., Menary, M., Kuhlbrodt, T., Andrews, M. & Andrews, T. MOHC HadGEM3-GC31-LL Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.6294

  127. 127.

    Ridley, J., Menary, M., Kuhlbrodt, T., Andrews, M. & Andrews, T. MOHC HadGEM3-GC31-MM Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.6297

  128. 128.

    Raghavan, K. & Panickal, S. CCCR-IITM IITM-ESM Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.3710

  129. 129.

    Volodin, E. et al. INM INM-CM4-8 Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.5080

  130. 130.

    Volodin, E. et al. INM INM-CM4-8 Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.12321

  131. 131.

    Volodin, E. et al. INM INM-CM5-0 Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.5081

  132. 132.

    Volodin, E. et al. INM INM-CM5-0 Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.12322

  133. 133.

    Boucher, O., Denvil, S., Caubel, A. & Foujols, M. A. IPSL IPSL-CM6A-LR Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.5251

  134. 134.

    Boucher, O., Denvil, S., Caubel, A. & Foujols, M. A. IPSL IPSL-CM6A-LR Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.1532

  135. 135.

    Stouffer, R. UA MCM-UA-1-0 Model Output Prepared for CMIP6 CMIP piControl (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.8890

  136. 136.

    Hajima, T. et al. MIROC MIROC-ES2L Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.5710

  137. 137.

    Tachiiri, K. et al. MIROC MIROC-ES2L Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.936

  138. 138.

    Tatebe, H. & Watanabe, M. MIROC MIROC6 Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.5711

  139. 139.

    Shiogama, H., Abe, M. & Tatebe, H. MIROC MIROC6 Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.898

  140. 140.

    Neubauer, D. et al. HAMMOZ-Consortium MPI-ESM1.2-HAM Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.5037

  141. 141.

    Jungclaus, J. et al. MPI-M MPI-ESM1.2-HR Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.6674

  142. 142.

    Schupfner, M. et al. DKRZ MPI-ESM1.2-HR Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.2450

  143. 143.

    Wieners, K.-H. et al. MPI-M MPI-ESM1.2-LR Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.6675

  144. 144.

    Yukimoto, S. et al. MRI MRI-ESM2.0 Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.6900

  145. 145.

    Yukimoto, S. et al. MRI MRI-ESM2.0 Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.638.

  146. 146.

    Cao, J. & Wang, B. NUIST NESMv3 Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.8776

  147. 147.

    Cao, J. NUIST NESMv3 Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.2027

  148. 148.

    Bethke, I. et al. NCC NorCPM1 Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.10896

  149. 149.

    Guo, C. et al. NCC NorESM1-F Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.11595

  150. 150.

    Seland, Ø. et al. NCC NorESM2-LM Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.8217

  151. 151.

    Bentsen, M. et al. NCC NorESM2-MM Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.8221

  152. 152.

    Park, S. & Shin, J. SNU SAM0-UNICON Model Output Prepared for CMIP6 CMIP piControl Version 20200729 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.7791

  153. 153.

    Lee, W.-L. & Liang, H.-C. AS-RCEC TaiESM1.0 Model Output Prepared for CMIP6 CMIP piControl (Earth System Grid Federation, 2020); https://doi.org/10.22033/ESGF/CMIP6.9798

  154. 154.

    Tang, Y. et al. MOHC UKESM1.0-LL Model Output Prepared for CMIP6 CMIP piControl (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.6298

  155. 155.

    Good, P. et al. MOHC UKESM1.0-LL Model Output Prepared for CMIP6 ScenarioMIP Version 20191204 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.1567

  156. 156.

    chrisroadmap, Gieseke, R. & Nicholls, Z. OMS-NetZero/FAIR: RCMIP Phase 1 Version 1.5 (Zenodo, 2019); https://doi.org/10.5281/zenodo.3588880

Download references

Acknowledgements

We thank J. Rogelj for providing the NDC scenario data and K. Haustein for providing the data used to calculate the observation-based estimates of internal variability. C.M.M., A.C.M., P.M.F., C.J.S. and K.B.T. were supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 820829 (CONSTRAIN project). A.C.M. was supported by the Natural Environment Research Council (grant no. NE/M018199/1) and Leverhulme Trust. C.J.S. was supported by a NERC/IIASA Collaborative Research Fellowship (no. NE/T009381/1). We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modelling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP6 and ESGF.

Author information

Affiliations

Authors

Contributions

P.M.F. and A.C.M. designed the study. C.M.M. performed the analysis and produced the figures. C.J.S. performed the FaIR simulations. K.B.T. provided the constrained CMIP6 projections. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Christine M. McKenna.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Daniel Huppmann, Giacomo Marangoni and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Tables 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McKenna, C.M., Maycock, A.C., Forster, P.M. et al. Stringent mitigation substantially reduces risk of unprecedented near-term warming rates. Nat. Clim. Chang. 11, 126–131 (2021). https://doi.org/10.1038/s41558-020-00957-9

Download citation

Further reading

  • Projected land ice contributions to twenty-first-century sea level rise

    • Tamsin L. Edwards
    • , Sophie Nowicki
    • , Ben Marzeion
    • , Regine Hock
    • , Heiko Goelzer
    • , Hélène Seroussi
    • , Nicolas C. Jourdain
    • , Donald A. Slater
    • , Fiona E. Turner
    • , Christopher J. Smith
    • , Christine M. McKenna
    • , Erika Simon
    • , Ayako Abe-Ouchi
    • , Jonathan M. Gregory
    • , Eric Larour
    • , William H. Lipscomb
    • , Antony J. Payne
    • , Andrew Shepherd
    • , Cécile Agosta
    • , Patrick Alexander
    • , Torsten Albrecht
    • , Brian Anderson
    • , Xylar Asay-Davis
    • , Andy Aschwanden
    • , Alice Barthel
    • , Andrew Bliss
    • , Reinhard Calov
    • , Christopher Chambers
    • , Nicolas Champollion
    • , Youngmin Choi
    • , Richard Cullather
    • , Joshua Cuzzone
    • , Christophe Dumas
    • , Denis Felikson
    • , Xavier Fettweis
    • , Koji Fujita
    • , Benjamin K. Galton-Fenzi
    • , Rupert Gladstone
    • , Nicholas R. Golledge
    • , Ralf Greve
    • , Tore Hattermann
    • , Matthew J. Hoffman
    • , Angelika Humbert
    • , Matthias Huss
    • , Philippe Huybrechts
    • , Walter Immerzeel
    • , Thomas Kleiner
    • , Philip Kraaijenbrink
    • , Sébastien Le clec’h
    • , Victoria Lee
    • , Gunter R. Leguy
    • , Christopher M. Little
    • , Daniel P. Lowry
    • , Jan-Hendrik Malles
    • , Daniel F. Martin
    • , Fabien Maussion
    • , Mathieu Morlighem
    • , James F. O’Neill
    • , Isabel Nias
    • , Frank Pattyn
    • , Tyler Pelle
    • , Stephen F. Price
    • , Aurélien Quiquet
    • , Valentina Radić
    • , Ronja Reese
    • , David R. Rounce
    • , Martin Rückamp
    • , Akiko Sakai
    • , Courtney Shafer
    • , Nicole-Jeanne Schlegel
    • , Sarah Shannon
    • , Robin S. Smith
    • , Fiammetta Straneo
    • , Sainan Sun
    • , Lev Tarasov
    • , Luke D. Trusel
    • , Jonas Van Breedam
    • , Roderik van de Wal
    • , Michiel van den Broeke
    • , Ricarda Winkelmann
    • , Harry Zekollari
    • , Chen Zhao
    • , Tong Zhang
    •  & Thomas Zwinger

    Nature (2021)

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing