Expert assessment of future vulnerability of the global peatland carbon sink

An Author Correction to this article was published on 21 January 2021

This article has been updated

Abstract

The carbon balance of peatlands is predicted to shift from a sink to a source this century. However, peatland ecosystems are still omitted from the main Earth system models that are used for future climate change projections, and they are not considered in integrated assessment models that are used in impact and mitigation studies. By using evidence synthesized from the literature and an expert elicitation, we define and quantify the leading drivers of change that have impacted peatland carbon stocks during the Holocene and predict their effect during this century and in the far future. We also identify uncertainties and knowledge gaps in the scientific community and provide insight towards better integration of peatlands into modelling frameworks. Given the importance of the contribution by peatlands to the global carbon cycle, this study shows that peatland science is a critical research area and that we still have a long way to go to fully understand the peatland–carbon–climate nexus.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Integrating peatland knowledge in climate change modelling frameworks.
Fig. 2: The main agents of change impacting the global peatland carbon balance globally.
Fig. 3: Expert assessment of the global peatland carbon balance over time.

Data availability

Data supporting the findings of this study, as well as references used to generate the maps, are available within the supplementary information files. All anonymized survey data generated and analysed during this study are available from the corresponding authors upon request.

Change history

  • 21 January 2021

    A Correction to this paper has been published: https://doi.org/10.1038/s41558-021-00991-1.

References

  1. 1.

    Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Change 8, 907–913 (2018).

    CAS  Google Scholar 

  2. 2.

    IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  3. 3.

    Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).

    Google Scholar 

  4. 4.

    Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).

    Google Scholar 

  5. 5.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS  Google Scholar 

  6. 6.

    Frolking, S., Roulet, N. & Fuglestvedt, S. How northern peatlands influence the Earth’s radiative budget: sustained methane emission versus sustained carbon sequestration. J. Geophys. Res. 111, G01008 (2006).

    Google Scholar 

  7. 7.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  8. 8.

    Frolking, S. et al. Peatlands in the Earth’s 21st century climate system. Environ. Rev. 19, 371–396 (2011).

    CAS  Google Scholar 

  9. 9.

    Kleinen, T., Brovkin, V. & Schuldt, R. J. A dynamic model of wetland extent and peat accumulation: results for the Holocene. Biogeosciences 9, 235–248 (2012).

    Google Scholar 

  10. 10.

    Müller, J. & Joos, F. Peatland area and carbon over the past 21 000 years – a global process based model investigation. Biogeosci. Discuss. Preprint at https://doi.org/10.5194/bg-2020-110 (2020).

  11. 11.

    Todd-Brown, K. E. et al. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10, 1717–1736 (2013).

    Google Scholar 

  12. 12.

    Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).

    CAS  Google Scholar 

  13. 13.

    Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015).

    CAS  Google Scholar 

  14. 14.

    Miettinen, J., Shi, C. & Liew, S. C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67–78 (2016).

    Google Scholar 

  15. 15.

    Rommain, R. et al. A radiative forcing analysis of tropical peatlands before and after their conversion to agricultural plantations. Glob. Change Biol. 24, 5518–5533 (2018).

    Google Scholar 

  16. 16.

    Page, S. E. & Baird, A. J. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016).

    Google Scholar 

  17. 17.

    Warren, M., Frolking, S., Zhaohua, D. & Kurnianto, S. Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the twenty-first century: implications for climate mitigation. Mitig. Adapt. Strateg. Glob. Chang. 22, 1041–1061 (2017).

    Google Scholar 

  18. 18.

    Parish F. et al (eds) Assessment on Peatlands, Biodiversity and Climate Change: Main Report (Global Environment Centre and Wetlands International, 2008).

  19. 19.

    Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (2018).

    CAS  Google Scholar 

  20. 20.

    Nugent, K. A. et al. Prompt active restoration of peatlands substantially reduces climate impact. Environ. Res. Lett. 14, 124030 (2019).

    CAS  Google Scholar 

  21. 21.

    Günther, A. A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1644 (2020).

    Google Scholar 

  22. 22.

    Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).

    Google Scholar 

  23. 23.

    Bonn, A. et al. (eds) Peatland Restoration and Ecosystems: Science, Policy, and Practice (Cambridge Univ. Press, 2016).

  24. 24.

    Seppälä, M. Surface abrasion of palsas by wind action in Finnish Lapland. Geomorphology 52, 141–148 (2003).

    Google Scholar 

  25. 25.

    Treat, C. et al. Widespread global peatland establishment and persistence over the last 130,000 y. Proc. Natl Acad. Sci. USA 116, 4822–4827 (2019).

    CAS  Google Scholar 

  26. 26.

    Beilman, D. W., MacDonald, G. M., Smith, L. C. & Reimer, P. J. Carbon accumulation in peatlands of West Siberia over the last 2000 years. Global Biogeochem. Cycles 23, GB1012 (2009).

    Google Scholar 

  27. 27.

    Loisel, J., Gallego-Sala, A. V. & Yu, Z. Global-scale pattern of peatland Sphagnum growth driven by photosynthetically active radiation and growing season length. Biogeosciences 9, 2737–2746 (2012).

    CAS  Google Scholar 

  28. 28.

    Charman, D. J. et al. Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences 10, 929–944 (2013).

    Google Scholar 

  29. 29.

    Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S. & Vasander, H. Heterotrophic respiration in drained tropical peat is greatly affected by temperature—a passive ecosystem cooling experiment. Environ. Res. Lett. 9, 105013 (2014).

    Google Scholar 

  30. 30.

    Wang, S., Zhuang, Q., Lähteenoja, O., Draper, F. C. & Cadillo-Quiroz, H. Potential shift from a carbon sink to a source in Amazonian peatlands under a changing climate. Proc. Natl Acad. Sci. USA 115, 12407–12412 (2018).

    CAS  Google Scholar 

  31. 31.

    Sjögersten, S. et al. Temperature response of ex-situ greenhouse gas emissions from tropical peatlands: interactions between forest type and peat moisture conditions. Geoderma 324, 47–55 (2018).

    Google Scholar 

  32. 32.

    Couwenberg, J., Dommain, R. & Joosten, H. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob. Change Biol. 16, 1715–1732 (2010).

    Google Scholar 

  33. 33.

    Carlson, K. M., Goodman, L. K. & May-Tobin, C. C. Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations. Environ. Res. Lett. 10, 074006 (2015).

    Google Scholar 

  34. 34.

    Hoyt, A. M. et al. CO2 emissions from an undrained tropical peatland: interacting influences of temperature, shading and water table depth. Glob. Change Biol. 25, 2885–2899 (2019).

    Google Scholar 

  35. 35.

    Freeman, C., Ostle, N. & Kang, H. An enzymatic ‘latch’ on a global carbon store. Nature 409, 149 (2001).

    CAS  Google Scholar 

  36. 36.

    Lund, M., Christensen, T. R., Lindroth, A. & Schubert, P. Effects of drought conditions on the carbon dioxide dynamics in a temperate peatland. Environ. Res. Lett. 7, 045704 (2012).

    Google Scholar 

  37. 37.

    Cobb, A. R. et al. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proc. Natl Acad. Sci. USA 114, E5187–E5196 (2017).

    CAS  Google Scholar 

  38. 38.

    Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017).

    CAS  Google Scholar 

  39. 39.

    Henman, J. & Poulter, B. Inundation of freshwater peatlands by sea level rise: uncertainty and potential carbon cycle feedbacks. J. Geophys. Res. Atmos. 113, G01011 (2008).

    Google Scholar 

  40. 40.

    Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567, 91–96 (2019).

    CAS  Google Scholar 

  41. 41.

    Dommain, R., Couwenberg, J. & Joosten, H. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat. Sci. Rev. 30, 999–1010 (2011).

    Google Scholar 

  42. 42.

    Packalen, M. S. & Finkelstein, S. A. Quantifying Holocene variability in carbon uptake and release since peat initiation in the Hudson Bay Lowlands, Canada. Holocene 24, 1063–1074 (2014).

    Google Scholar 

  43. 43.

    Grundling P.-L. The role of sea-level rise in the formation of peatlands in Maputaland. Boletim Geológico (Ministerio dos Recursos Minerais e Energia, Direccao Geral de Geologia Mozambique) 43, 58–67 (2004).

  44. 44.

    Kirwan, M. L. & Mudd, S. M. Response of salt-marsh carbon accumulation to climate change. Nature 489, 550–553 (2012).

    CAS  Google Scholar 

  45. 45.

    Briggs, J. et al. Influence of climate and hydrology on carbon in an early Miocene peatland. Earth Planet. Sci. Lett. 253, 445–454 (2007).

    CAS  Google Scholar 

  46. 46.

    Lähteenoja, O. et al. The large Amazonian peatland carbon sink in the subsiding Pastaza-Marañón foreland basin, Peru. Glob. Change Biol. 18, 164–178 (2012).

    Google Scholar 

  47. 47.

    Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053–1071 (2012).

    CAS  Google Scholar 

  48. 48.

    Whittle, A. & Gallego-Sala, A. V. Vulnerability of the peatland carbon sink to sea-level rise. Sci. Rep. 6, 28758 (2016).

    CAS  Google Scholar 

  49. 49.

    Blankespoor, B., Dasgupta, S. & Laplante, B. Sea-level rise and coastal wetlands. Ambio 43, 996–1005 (2014).

    Google Scholar 

  50. 50.

    Spencer, T. et al. Global coastal wetland change under sea-level rise and related stresses: the DIVA Wetland Change Model. Glob. Planet. Change 139, 15–30 (2016).

    Google Scholar 

  51. 51.

    Zuidhoff, F. S. & Kolstrup, E. Changes in palsa distribution in relation to climate change in Laivadalen, northern Sweden, especially 1960–1997. Permafr. Periglac. Process. 11, 55–69 (2000).

    Google Scholar 

  52. 52.

    Payette, S., Delwaide, A., Caccianiga, M. & Beauchemin, M. Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys. Res. Lett. 31, L18208 (2004).

    Google Scholar 

  53. 53.

    Borge, A. F., Westermann, S., Solheim, I. & Etzelmüller, B. Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years. Cryosphere 11, 1–16 (2017).

    Google Scholar 

  54. 54.

    Cooper, M. D. A. et al. Limited contribution of permafrost carbon to methane release from thawing peatlands. Nat. Clim. Change 7, 507–511 (2017).

    CAS  Google Scholar 

  55. 55.

    Bubier, J., Moore, T., Bellisario, L., Comer, N. T. & Crill, P. M. Ecological controls on methane emissions from a Northern Peatland Complex in the zone of discontinuous permafrost, Manitoba, Canada. Global Biogeochem. Cycles 9, 455–470 (1995).

    CAS  Google Scholar 

  56. 56.

    Christensen, T. R. et al. Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys. Res. Lett. 31, L04501 (2004).

    Google Scholar 

  57. 57.

    Olefeldt, D., Turetsky, M. R., Crill, P. M. & McGuire, A. D. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Glob. Change Biol. 19, 589–603 (2013).

    Google Scholar 

  58. 58.

    O’Donnell, J. A. et al. The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland. Ecosystems 15, 213–229 (2012).

    Google Scholar 

  59. 59.

    Jones, M. C. et al. Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands. Glob. Change Biol. 23, 1109–1127 (2017).

    Google Scholar 

  60. 60.

    Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    CAS  Google Scholar 

  61. 61.

    Jones, M. C., Grosse, G., Jones, B. M. & Walter Anthony, K. Peat accumulation in drained thermokarst lake basins in continuous, ice‐rich permafrost, northern Seward Peninsula, Alaska. J. Geophys. Res. Biogeosci. 117, G00M07 (2012).

    Google Scholar 

  62. 62.

    Walter Anthony, K. M. et al. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511, 452–456 (2014).

    Google Scholar 

  63. 63.

    Turetsky, M. R., Wieder, R. K., Vitt, D. H., Evans, R. J. & Scott, K. D. The disappearance of relict permafrost in boreal North America: effects on peatland carbon storage and fluxes. Glob. Change Biol. 13, 1922–1934 (2007).

    Google Scholar 

  64. 64.

    Rossi, S. et al. FAOSTAT estimates of greenhouse gas emissions from biomass and peat fires. Climatic Change 135, 699–711 (2016).

    CAS  Google Scholar 

  65. 65.

    Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (2002).

    CAS  Google Scholar 

  66. 66.

    Field, R. D. et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl Acad. Sci. USA 113, 9204–9209 (2016).

    CAS  Google Scholar 

  67. 67.

    Gaveau, D. L. A. et al. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires. Sci. Rep. 4, 6112 (2014).

    CAS  Google Scholar 

  68. 68.

    Lyu, Z. et al. The role of environmental driving factors in historical and projected carbon dynamics of wetland ecosystems in Alaska. Ecol. Appl. 28, 1377–1395 (2018).

    Google Scholar 

  69. 69.

    Gibson, C. M. et al. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 9, 3041 (2018).

    Google Scholar 

  70. 70.

    Dadap, N. C., Cobb, A. R., Hoyt, A. M., Harvey, C. F. & Konings, A. G. Satellite soil moisture observations predict burned area in Southeast Asian peatlands. Environ. Res. Lett. 14, 094014 (2019).

    Google Scholar 

  71. 71.

    Zaccone, C. et al. Smouldering fire signatures in peat and their implications for palaeoenvironmental reconstructions. Geochim. Cosmochim. Acta 137, 134–146 (2014).

    CAS  Google Scholar 

  72. 72.

    Kettridge, N. et al. Burned and unburned peat water repellency: implications for peatland evaporation following wildfire. J. Hydrol. 513, 335–341 (2014).

    Google Scholar 

  73. 73.

    Koh, L. P., Miettinen, J., Liew, S. C. & Ghazoul, J. Remotely sensed evidence of tropical peatland conversion to oil palm. Proc. Natl Acad. Sci. USA 108, 5127–5132 (2011).

    CAS  Google Scholar 

  74. 74.

    Rooney, R. C., Bayley, S. E. & Schindler, D. W. Oil sands mining and reclamation cause massive loss of peatland and stored carbon. Proc. Natl Acad. Sci. USA 109, 4933–4937 (2012).

    CAS  Google Scholar 

  75. 75.

    Turunen, J. Development of Finnish peatland area and carbon storage 1950–2000. Boreal Environ. Res. 13, 319–334 (2008).

    CAS  Google Scholar 

  76. 76.

    Wild, B. et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proc. Natl Acad. Sci. USA 116, 10280–10285 (2019).

    CAS  Google Scholar 

  77. 77.

    Hoyt, A. M., Chaussard, E., Seppalainen, S. S. & Harvey, C. F. Widespread subsidence and carbon emissions across Southeast Asian peatlands. Nat. Geosci. 13, 435–440 (2020).

    CAS  Google Scholar 

  78. 78.

    Tuittila, E.-S. et al. Methane dynamics of a restored cut-away peatland. Glob. Change Biol. 6, 569–581 (2000).

    Google Scholar 

  79. 79.

    Waddington, J. M. & Day, S. M. Methane emissions from a peatland following restoration. J. Geophys. Res. Biogeosci. 112, G03018 (2007).

    Google Scholar 

  80. 80.

    Vet, R. et al. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ. 93, 3–100 (2014).

    CAS  Google Scholar 

  81. 81.

    Dentener, F. et al. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochem. Cycles 20, GB4003 (2006).

    Google Scholar 

  82. 82.

    Bubier, J. L., Moore, T. R. & Bledzki, L. A. Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Glob. Change Biol. 13, 1168–1186 (2007).

    Google Scholar 

  83. 83.

    Juutinen, S. et al. Responses of mosses Sphagnum capillifolium and Polytrichum strictum to nitrogen deposition in a bog: height growth, ground cover, and CO2 exchange. Botany 94, 127–138 (2016).

    CAS  Google Scholar 

  84. 84.

    Wieder, R. K. et al. Experimental nitrogen addition alters structure and function of a boreal bog: critical load and thresholds revealed. Ecol. Monogr. 89, e01371 (2019).

    Google Scholar 

  85. 85.

    Limpens, J. et al. Climatic modifiers of the response to nitrogen deposition in peat-forming Sphagnum mosses: a meta-analysis. New Phytol. 191, 496–507 (2011).

    CAS  Google Scholar 

  86. 86.

    Larmola, T. et al. Vegetation feedbacks of nutrient deposition lead to a weaker carbon sink in an ombrotrophic bog. Glob. Change Biol. 19, 3729–3739 (2013).

    Google Scholar 

  87. 87.

    Pinsonneault, A. J., Moore, T. R. & Roulet, N. T. Effects of long-term fertilization on peat stoichiometry and associated microbial enzyme activity in an ombrotrophic bog. Biogeochemistry 129, 149–164 (2016).

    CAS  Google Scholar 

  88. 88.

    Bragazza, L. et al. Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc. Natl Acad. Sci. USA 103, 19386–19389 (2006).

    CAS  Google Scholar 

  89. 89.

    Juutinen, S. et al. Long-term nutrient addition increased CH4 emission from a bog through direct and indirect effects. Sci. Rep. 8, 3838 (2018).

    Google Scholar 

  90. 90.

    Olid, C., Nilsson, M. B., Eriksson, T. & Klaminder, J. The effects of temperature and nitrogen and sulfur additions on carbon accumulation in a nutrient-poor boreal mire: decadal effects assessed using 210Pb peat chronologies. J. Geophys. Res. Biogeosci. 119, 392–403 (2014).

    CAS  Google Scholar 

  91. 91.

    Alexandrov, G. A., Brovkin, V. A., Kleinen, T. & Yu, Z. The capacity of northern peatlands for long-term carbon sequestration. Biogeosciences 17, 47–54 (2020).

    CAS  Google Scholar 

  92. 92.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS  Google Scholar 

  93. 93.

    Christensen, T. R., Arora, V. K., Gauss, M., Höglund-Isaksson, L. & Parmentier, F.-J. W. Tracing the climate signal: mitigation of anthropogenic methane emissions can outweigh a large Arctic natural emission increase. Sci. Rep. 9, 1146 (2019).

    Google Scholar 

  94. 94.

    Mach, K. J., Mastrandrea, M. D., Freeman, P. T. & Field, C. B. Unleashing expert judgment in assessment. Glob. Environ. Change 44, 1–14 (2017).

    Google Scholar 

  95. 95.

    Schuur, E. A. G. et al. Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change 119, 359–374 (2013).

    CAS  Google Scholar 

  96. 96.

    Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P. & Cooke, R. M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl Acad. Sci. USA 116, 11195–11200 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

This work developed from the PAGES (Past Global Changes) C-PEAT (Carbon in Peat on EArth through Time) working group; we acknowledge support from PAGES funding by the American and Swiss National Science Foundations. We also thank the International Union for Quaternary Research (INQUA) and the Department of Geography at Texas A&M University for workshop support. We thank P. Campbell for creating the peatland infographic, as well as D. McGuire for his comments on a previous version of the manuscript. We also acknowledge research support from Universidad Javeriana (J.C.B.); the National Science Foundation of the United States under grant nos. 1802838 (J. Loisel), 1019523 (J.L.B.) and 1802825 (C.T. and S.F.); the National Environment Research Council of the United Kingdom under grant nos. NE/1012915 and NE/S001166/1 (A.V.G.-S. and D.J.C.); the Attraction and Insertion of Advanced Human Capital Program of the National Commission for Scientific and Technological Research of Chile and the NEXER-UMAG project under grant no. 7718002 (C.A.M.); the Geological Survey Land Resources Research and Development program of the United States (M.C.J.); the Natural Sciences and Engineering Research Council of Canada (M. Garneau, S.F., T. Lacourse and J.W.); the National Science Centre of Poland under grant no. 2015/17/B/ST10/01656 (M.L.); the Academy of Finland projects 286731 and 319262 (T. Larmola); the Belgian National Fund for Scientific Research under grant no. 1167019N (W.S.); the Office of International Affairs and Global Network at Chulalongkorn University (S.C.); the Alexander von Humboldt Foundation of Germany (M.B.); the Accelerating Higher Education Expansion and Development and Development Oriented Research programs of the World Bank (A.S.R.); and the Swiss National Science Foundation under grant no. 200020_172476 (F.J. and J.M.).

Author information

Affiliations

Authors

Contributions

J. Loisel, A.V.G.-S., M.J.A. and G.M. performed most of the analyses and wrote most of the manuscript. D.B., J.C.B., J. Blewett, P.C., D.J.C., S.C., A.V.G.-S., A. Hedgpeth, T.K., A.K., D.L., J. Loisel, C.A.M., J.M., S.v.B., J.B.W. and Z.Y. formulated the research goals and ideas during the 2018 C-PEAT workshop in Texas, United States. J.L.B., M. Garneau, T.M., A.B.K.S., S. Page, M.V., A.M.H., S.J., T. Larmola, A.L., K.M. and C.T. wrote parts of the review section. Other co-authors (A. Heinemeyer., S.P., T. Lacourse and M. Gałka) contributed with unpublished data or completed the expert opinion survey. All co-authors contributed to data analysis and writing of the manuscript.

Corresponding authors

Correspondence to J. Loisel or A. V. Gallego-Sala.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Katharine Mach and Matthew Warren for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 All survey results (individual data points).

Each individual response is shown as a spot. Positive values represent peatland sinks, negative values represent peatland sources to the atmosphere. When a range of values was given, the midpoint is used. Codes for drivers: T = temperature, M = moisture balance, SL = sea level, F = fire, LU = land use, P = permafrost, N = nitrogen deposition, AP = atmospheric pollution.

Extended Data Fig. 2 All self-reported confidence and expertise levels, organized by time period and peatland region.

Blue (yellow) bars represent high-latitude (tropical) peatlands. Confidence and expertise values specified in the survey were 1 = very low, 2 = low, 3 = medium, 4 = high, 5 = very high.

Extended Data Fig. 3 Comparison of survey results from all respondents vs. those from highly self-rated experts.

Data shown as mean and 10th – 90th percentiles. High-latitude peatland results shown in blue (dark = all data, light = E>2). Tropical peatland data shown in yellow (dark yellow = all data, light beige = E>2). Positive values represent peatland sinks, negative values represent peatland sources to the atmosphere. Codes for drivers: T = temperature, M = moisture balance, SL = sea level, F = fire, LU = land use, P = permafrost, N = nitrogen deposition, AP =atmospheric pollution.

Supplementary information

Supplementary Information

Supplementary methods, results, discussion, Figs. S1–S3, Tables S1–S11 and Appendices 1–5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loisel, J., Gallego-Sala, A.V., Amesbury, M.J. et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Chang. 11, 70–77 (2021). https://doi.org/10.1038/s41558-020-00944-0

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing