Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Complexity revealed in the greening of the Arctic


As the Arctic warms, vegetation is responding, and satellite measures indicate widespread greening at high latitudes. This ‘greening of the Arctic’ is among the world’s most important large-scale ecological responses to global climate change. However, a consensus is emerging that the underlying causes and future dynamics of so-called Arctic greening and browning trends are more complex, variable and inherently scale-dependent than previously thought. Here we summarize the complexities of observing and interpreting high-latitude greening to identify priorities for future research. Incorporating satellite and proximal remote sensing with in-situ data, while accounting for uncertainties and scale issues, will advance the study of past, present and future Arctic vegetation change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Satellite records indicate greening trends across the circumpolar Arctic.
Fig. 2: Ecological interpretation of trends in NDVI requires a consideration of non-ecological factors.
Fig. 3: Spatial heterogeneity in landcover can influence NDVI–vegetation relationships.
Fig. 4: Satellite-derived estimates do not always match in-situ observations of plant phenology across the growing season.
Fig. 5: Arctic greening is influenced by issues of measurement scale and inference across ecological hierarchies.

Data availability

Data come from publicly available remote sensing and ecological datasets including: MODIS (, GIMMS3g.v1 (, the High Latitude Drone Ecology Network (, shrub abundance, annual growth ring and phenology datasets (,,,

Code availability

Code is available in a GitHub repository (


  1. 1.

    IPCC. Climate Change 2013: The Physical Science Basis (eds. Stocker, T. E. et al.) (Cambridge Univ. Press, 2013).

  2. 2.

    Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019). Reviews how Arctic warming has outpaced the global average, with wide-reaching consequences for tundra ecosystems.

    Article  Google Scholar 

  3. 3.

    Bhatt, U. S. et al. Recent declines in warming and vegetation greening trends over Pan-Arctic tundra. Remote Sens. 5, 4229–4254 (2013). Reports of declines in spectral greening trends across Pan-Arctic tundra ecosystems.

    Article  Google Scholar 

  4. 4.

    de Jong, R., de Bruin, S., de Wit, A., Schaepman, M. E. & Dent, D. L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 115, 692–702 (2011).

    Article  Google Scholar 

  5. 5.

    Forbes, B. C., Macias-Fauria, M. & Zetterberg, P. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Glob. Change Biol. 16, 1542–1554 (2010). Links spectral greening with both warming and tundra shrub growth in the Russian Arctic.

    Article  Google Scholar 

  6. 6.

    Guay, K. C. et al. Vegetation productivity patterns at high northern latitudes: a multi-sensor satellite data assessment. Glob. Change Biol. 20, 3147–3158 (2014). Reports conflicting patterns in spectral greening trends from different satellite datasets, highlighting critical uncertainties in the links between satellite-observed spectral greening trends and in-situ vegetation change.

    Article  Google Scholar 

  7. 7.

    Jia, G. J., Epstein, H. E. & Walker, D. A. Greening of arctic Alaska, 1981–2001. Geophys. Res. Lett. 30 (2003).

  8. 8.

    Jia, G. J., Epstein, H. E. & Walker, D. A. Vegetation greening in the Canadian Arctic related to decadal warming. J. Environ. Monit. 11, 2231 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    Ju, J. & Masek, J. G. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sens. Environ. 176, 1–16 (2016).

    Article  Google Scholar 

  10. 10.

    Macias-Fauria, M., Forbes, B. C., Zetterberg, P. & Kumpula, T. Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems. Nat. Clim. Change 2, 613–618 (2012).

    Article  Google Scholar 

  11. 11.

    Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. & Nemani, R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997). One of the early studies to report spectral greening trends for northern high-latitude ecosystems.

    CAS  Article  Google Scholar 

  12. 12.

    Phoenix, G. K. & Bjerke, J. W. Arctic browning: extreme events and trends reversing arctic greening. Glob. Change Biol. 22, 2960–2962 (2016). Reviews Arctic browning from an ecological perspective capturing the differences between events and trends in spectral greening and browning.

    Article  Google Scholar 

  13. 13.

    Zhang, Y., Song, C., Band, L. E., Sun, G. & Li, J. Reanalysis of global terrestrial vegetation trends from MODIS products: browning or greening? Remote Sens. Environ. 191, 145–155 (2017).

    Article  Google Scholar 

  14. 14.

    Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    National Academies of Sciences, Engineering and Medicine. Understanding Northern Latitude Vegetation Greening and Browning: Proceedings of a Workshop (National Academies Press, 2019);

  16. 16.

    Huang, M. et al. Velocity of change in vegetation productivity over northern high latitudes. Nat. Ecol. Evol. 1, 1649 (2017).

    Article  Google Scholar 

  17. 17.

    Metcalfe, D. B. et al. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nat. Ecol. Evol. 2, 1443 (2018).

    Article  Google Scholar 

  18. 18.

    Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).

    Article  Google Scholar 

  19. 19.

    Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 045509 (2011).

    Article  Google Scholar 

  20. 20.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  21. 21.

    Forkel, M. et al. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 351, 696–699 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3, 673–677 (2013).

    Article  Google Scholar 

  23. 23.

    Lara, M. J., Nitze, I., Grosse, G., Martin, P. & McGuire, A. D. Reduced arctic tundra productivity linked with landform and climate change interactions. Sci. Rep. 8, 2345 (2018).

    Article  CAS  Google Scholar 

  24. 24.

    Miles, V. V. & Esau, I. Spatial heterogeneity of greening and browning between and within bioclimatic zones in northern West Siberia. Environ. Res. Lett. 11, 115002 (2016).

    Article  Google Scholar 

  25. 25.

    Piao, S. et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 5, 5018 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Bjorkman, A. D. et al. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio (2019).

  27. 27.

    Martin, A. C., Jeffers, E. S., Petrokofsky, G., Myers-Smith, I. & Macias-Fauria, M. Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach. Environ. Res. Lett. 12, 085007 (2017).

    Article  Google Scholar 

  28. 28.

    Piao, S., Friedlingstein, P., Ciais, P., Viovy, N. & Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past two decades. Glob. Biogeochem. Cycles 21, GB3018 (2007).

    Google Scholar 

  29. 29.

    Raynolds, M. K., Walker, D. A. & Maier, H. A. NDVI patterns and phytomass distribution in the circumpolar Arctic. Remote Sens. Environ. 102, 271–281 (2006).

    Article  Google Scholar 

  30. 30.

    Forkel, M. et al. Trend change detection in NDVI time series: effects of inter-annual variability and methodology. Remote Sens. 5, 2113–2144 (2013). Highlights how the analysed satellite dataset, the corresponding spatiotemporal resolution and the applied statistical method influence the detection of spectral greening trends.

    Article  Google Scholar 

  31. 31.

    Tucker, C. J. et al. An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485–4498 (2005).

    Article  Google Scholar 

  32. 32.

    Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).

    Article  Google Scholar 

  33. 33.

    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).

    Article  Google Scholar 

  34. 34.

    Brown, T. B. et al. Using phenocams to monitor our changing Earth: toward a global phenocam network. Front. Ecol. Environ. 14, 84–93 (2016).

    Article  Google Scholar 

  35. 35.

    Myneni, R. B., Hall, F. G., Sellers, P. J. & Marshak, A. L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 33, 481–486 (1995).

    Article  Google Scholar 

  36. 36.

    Forkel, M. et al. Codominant water control on global interannual variability and trends in land surface phenology and greenness. Glob. Change Biol. 21, 3414–3435 (2015).

    Article  Google Scholar 

  37. 37.

    Myneni, R. B. & Williams, D. L. On the relationship between fAPAR and NDVI. Remote Sens. Environ. 49, 200–211 (1994).

    Article  Google Scholar 

  38. 38.

    Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 5, 927–948 (2013).

    Article  Google Scholar 

  39. 39.

    Sellers, P. J. Canopy reflectance, photosynthesis, and transpiration, II. The role of biophysics in the linearity of their interdependence. Remote Sens. Environ. 21, 143–183 (1987).

    Article  Google Scholar 

  40. 40.

    Benedetti, R. & Rossini, P. On the use of NDVI profiles as a tool for agricultural statistics: the case study of wheat yield estimate and forecast in Emilia Romagna. Remote Sens. Environ. 45, 311–326 (1993).

    Article  Google Scholar 

  41. 41.

    Goetz, S. J. & Prince, S. D. in Advances in Ecological Research vol. 28 (eds Fitter, A. H. & Raffaelli, D.) 57–92 (Academic, 1999).

  42. 42.

    Wang, L. & Fensholt, R. Temporal changes in coupled vegetation phenology and productivity are biome-specific in the Northern Hemisphere. Remote Sens. 9, 1277 (2017).

    Article  Google Scholar 

  43. 43.

    Bhatt, U. S. et al. Changing seasonality of panarctic tundra vegetation in relationship to climatic variables. Environ. Res. Lett. 12, 055003 (2017).

    Article  Google Scholar 

  44. 44.

    Karlsen, S. R., Anderson, H. B., van der Wal, R. & Hansen, B. B. A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high arctic plant productivity. Environ. Res. Lett. 13, 025011 (2018).

    Article  Google Scholar 

  45. 45.

    Fensholt, R. & Proud, S. R. Evaluation of Earth Observation based global long term vegetation trends—comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 119, 131–147 (2012).

    Article  Google Scholar 

  46. 46.

    Tian, F. et al. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sens. Environ. 163, 326–340 (2015).

    Article  Google Scholar 

  47. 47.

    Pattison, R. R., Jorgenson, J. C., Raynolds, M. K. & Welker, J. M. Trends in NDVI and tundra community composition in the Arctic of NE Alaska between 1984 and 2009. Ecosystems 18, 707–719 (2015).

    Article  Google Scholar 

  48. 48.

    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).

    CAS  Article  Google Scholar 

  49. 49.

    Boelman, N. T., Gough, L., McLaren, J. R. & Greaves, H. Does NDVI reflect variation in the structural attributes associated with increasing shrub dominance in arctic tundra? Environ. Res. Lett. 6, 035501 (2011).

    Article  Google Scholar 

  50. 50.

    Prevéy, J. S. et al. Warming shortens flowering seasons of tundra plant communities. Nat. Ecol. Evol. 3, 45 (2019).

    Article  Google Scholar 

  51. 51.

    Oberbauer, S. F. et al. Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment. Phil. Trans. R. Soc. B 368, (2013).

  52. 52.

    Post, E., Steinman, B. A. & Mann, M. E. Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep. 8, 3927 (2018).

    Article  CAS  Google Scholar 

  53. 53.

    Berner, L. T., Jantz, P., Tape, K. D. & Goetz, S. J. Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska. Environ. Res. Lett. 13, 035002 (2018).

    Article  Google Scholar 

  54. 54.

    Blok, D. et al. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature. Environ. Res. Lett. 6, 035502 (2011).

    Article  Google Scholar 

  55. 55.

    Grosse, G., Goetz, S., McGuire, A. D., Romanovsky, V. E. & Schuur, E. A. G. Changing permafrost in a warming world and feedbacks to the Earth system. Environ. Res. Lett. 11, 040201 (2016).

    Article  CAS  Google Scholar 

  56. 56.

    Brown, R., Derksen, C. & Wang, L. Assessment of spring snow cover duration variability over northern Canada from satellite datasets. Remote Sens. Environ. 111, 367–381 (2007).

    Article  Google Scholar 

  57. 57.

    Gamon, J. A., Huemmrich, K. F., Stone, R. S. & Tweedie, C. E. Spatial and temporal variation in primary productivity (NDVI) of coastal Alaskan tundra: decreased vegetation growth following earlier snowmelt. Remote Sens. Environ. 129, 144–153 (2013). Highlights how spectral greening trends can be associated with soil moisture and growing degree days rather than earlier snowmelt, emphasizing the complexity in Arctic greening and environmental change.

    Article  Google Scholar 

  58. 58.

    Goswami S., Gamon J. A. & Tweedie C. E. Surface hydrology of an arctic ecosystem: multiscale analysis of a flooding and draining experiment using spectral reflectance. J. Geophys. Res. Biogeosci. 116, (2011).

  59. 59.

    Liu, N., Budkewitsch, P. & Treitz, P. Examining spectral reflectance features related to Arctic percent vegetation cover: Implications for hyperspectral remote sensing of Arctic tundra. Remote Sens. Environ. 192, 58–72 (2017).

    Article  Google Scholar 

  60. 60.

    Raynolds, M. K. & Walker, D. A. Increased wetness confounds Landsat-derived NDVI trends in the central Alaska North Slope region, 1985–2011. Environ. Res. Lett. 11, 085004 (2016).

    Article  Google Scholar 

  61. 61.

    Riihimäki, H., Heiskanen, J. & Luoto, M. The effect of topography on arctic-alpine aboveground biomass and NDVI patterns. Int. J. Appl. Earth Obs. 56, 44–53 (2017).

    Article  Google Scholar 

  62. 62.

    Stow, D. A. et al. Remote sensing of vegetation and land-cover change in Arctic tundra ecosystems. Remote Sens. Environ. 89, 281–308 (2004). Highlights the issues with satellite records of spectral greening due to cloud contamination, low Sun angle, surface water and other factors.

    Article  Google Scholar 

  63. 63.

    Wang, S. et al. Limitations and challenges of MODIS-derived phenological metrics across different landscapes in pan-Arctic regions. Remote Sens. 10, 1784 (2018).

    Article  Google Scholar 

  64. 64.

    Bjerke, J. W. et al. Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks. Environ. Res. Lett. 9, 084006 (2014).

    Article  Google Scholar 

  65. 65.

    Bokhorst, S. et al. Impacts of extreme winter warming in the sub-arctic: growing season responses of dwarf shrub heathland. Glob. Change Biol. 14, 2603–2612 (2008).

    Google Scholar 

  66. 66.

    Richardson, A. D. et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 560, 368 (2018).

    CAS  Article  Google Scholar 

  67. 67.

    Bjerke, J. W. et al. Understanding the drivers of extensive plant damage in boreal and Arctic ecosystems: Insights from field surveys in the aftermath of damage. Sci. Total Environ. 599–600, 1965–1976 (2017).

    Article  CAS  Google Scholar 

  68. 68.

    Jepsen, J. U. et al. Ecosystem impacts of a range expanding forest defoliator at the forest-tundra ecotone. Ecosystems 16, 561–575 (2013).

    Article  Google Scholar 

  69. 69.

    Lund, M. et al. Larval outbreaks in West Greenland: instant and subsequent effects on tundra ecosystem productivity and CO2 exchange. Ambio 46, 26–38 (2017).

    CAS  Article  Google Scholar 

  70. 70.

    Post, E. S., Pedersen, C., Wilmers, C. C. & Forchhammer, M. C. Phenological sequences reveal aggregate life history response to climatic warming. Ecology 89, 363–370 (2008).

    Article  Google Scholar 

  71. 71.

    Johnson, D. R. et al. Exclusion of brown lemmings reduces vascular plant cover and biomass in Arctic coastal tundra: resampling of a 50+ year herbivore exclosure experiment near Barrow, Alaska. Environ. Res. Lett. 6, 045507 (2011).

    Article  Google Scholar 

  72. 72.

    Fritz, M., Vonk, J. E. & Lantuit, H. Collapsing Arctic coastlines. Nat. Clim. Change 7, 6–7 (2017).

    Article  Google Scholar 

  73. 73.

    Lantz, T. C., Kokelj, S. V. & Fraser, R. H. Ecological recovery in an Arctic delta following widespread saline incursion. Ecol. Appl. 25, 172–185 (2015).

    Article  Google Scholar 

  74. 74.

    Nitze, I. et al. Landsat-based trend analysis of lake dynamics across northern permafrost regions. Remote Sens. 9, 640 (2017).

    Article  Google Scholar 

  75. 75.

    Smith, L. C., Sheng, Y., MacDonald, G. M. & Hinzman, L. D. Disappearing Arctic lakes. Science 308, 1429–1429 (2005).

    CAS  Article  Google Scholar 

  76. 76.

    Rocha, A. V. et al. The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing. Environ. Res. Lett. 7, 044039 (2012).

    Article  Google Scholar 

  77. 77.

    Mack, M. C. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475, 489–492 (2011).

    CAS  Article  Google Scholar 

  78. 78.

    Park, T. et al. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ. Res. Lett. 11, 084001 (2016). Reports that spectral greening trends are more prevalent than spectral browning trends and that there are strong regional differences in satellite-derived estimates of growing season duration and productivity.

    Article  Google Scholar 

  79. 79.

    Fraser, R., Olthof, I., Carrière, M., Deschamps, A. & Pouliot, D. A method for trend-based change analysis in Arctic tundra using the 25-year Landsat archive. Polar Rec. 48, 83–93 (2012).

    Article  Google Scholar 

  80. 80.

    Frost, G. V., Epstein, H. E. & Walker, D. A. Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra. Environ. Res. Lett. 9, 025004 (2014).

    Article  Google Scholar 

  81. 81.

    Raynolds, M. K., Walker, D. A., Verbyla, D. & Munger, C. A. Patterns of change within a tundra landscape: 22-year Landsat NDVI trends in an area of the northern foothills of the Brooks Range, Alaska. Arct. Antarct. Alp. Res. 45, 249–260 (2013).

    Article  Google Scholar 

  82. 82.

    Weijers, S., Pape, R., Löffler, J. & Myers-Smith, I. H. Contrasting shrub species respond to early summer temperatures leading to correspondence of shrub growth patterns. Environ. Res. Lett. 13, 034005 (2018).

    Article  Google Scholar 

  83. 83.

    Brehaut, L. & Danby, R. K. Inconsistent relationships between annual tree ring-widths and satellite-measured NDVI in a mountainous subarctic environment. Ecol. Indic. 91, 698–711 (2018).

    Article  Google Scholar 

  84. 84.

    Gamm, C. M. et al. Declining growth of deciduous shrubs in the warming climate of continental western Greenland. J. Ecol. 106, 640–654 (2018).

    CAS  Article  Google Scholar 

  85. 85.

    Ropars, P. et al. Different parts, different stories: climate sensitivity of growth is stronger in root collars vs. stems in tundra shrubs. Glob. Change Biol. 23, 3281–3291 (2017).

    Article  Google Scholar 

  86. 86.

    Elmendorf, S. C. et al. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proc. Natl Acad. Sci. USA 112, 448–452 (2015).

    CAS  Article  Google Scholar 

  87. 87.

    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).

    Article  Google Scholar 

  88. 88.

    Zeng, H., Jia, G. & Epstein, H. Recent changes in phenology over the northern high latitudes detected from multi-satellite data. Environ. Res. Lett. 6, 045508 (2011).

    Article  Google Scholar 

  89. 89.

    Zeng, H., Jia, G. & Forbes, B. C. Shifts in Arctic phenology in response to climate and anthropogenic factors as detected from multiple satellite time series. Environ. Res. Lett. 8, 035036 (2013).

    Article  Google Scholar 

  90. 90.

    Park, T. et al. Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Glob. Change Biol. 25, 2382–2395 (2019).

    Google Scholar 

  91. 91.

    Helman, D. Land surface phenology: What do we really ‘see’ from space? Sci. Total Environ. 618, 665–673 (2018).

    CAS  Article  Google Scholar 

  92. 92.

    Callaghan, T. V. et al. Multiple effects of changes in Arctic snow cover. Ambio 40, 32–45 (2011).

    Article  Google Scholar 

  93. 93.

    Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 426 (2018).

    Article  CAS  Google Scholar 

  94. 94.

    Myers‐Smith, I. H. et al. Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. Ecol. Monogr. 89, e01351 (2019).

    Article  Google Scholar 

  95. 95.

    Westergaard-Nielsen, A. et al. Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013. Ambio 46, 39–52 (2017).

    Article  Google Scholar 

  96. 96.

    Oehri, J., Schmid, B., Schaepman-Strub, G. & Niklaus, P. A. Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. Proc. Natl Acad. Sci. USA 114, 10160–10165 (2017).

    CAS  Article  Google Scholar 

  97. 97.

    Armstrong, J. B., Takimoto, G., Schindler, D. E., Hayes, M. M. & Kauffman, M. J. Resource waves: phenological diversity enhances foraging opportunities for mobile consumers. Ecology 97, 1099–1112 (2016).

    Article  Google Scholar 

  98. 98.

    Khorsand Rosa, R. et al. Plant phenological responses to a long-term experimental extension of growing season and soil warming in the tussock tundra of Alaska. Glob. Change Biol. 21, 4520–4532 (2015).

    Article  Google Scholar 

  99. 99.

    Sweet, S. K., Gough, L., Griffin, K. L. & Boelman, N. T. Tall deciduous shrubs offset delayed start of growing season through rapid leaf development in the Alaskan Arctic tundra. Arct. Antarct. Alp. Res. 46, 682–697 (2014).

    Article  Google Scholar 

  100. 100.

    Sweet, S. K., Griffin, K. L., Steltzer, H., Gough, L. & Boelman, N. T. Greater deciduous shrub abundance extends tundra peak season and increases modeled net CO2 uptake. Glob. Change Biol. 21, 2394–2409 (2015).

    Article  Google Scholar 

  101. 101.

    Verbesselt, J., Hyndman, R., Newnham, G. & Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 114, 106–115 (2010).

    Article  Google Scholar 

  102. 102.

    Tucker, C. J. et al. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int. J. Biometeorol. 45, 184–190 (2001).

    CAS  Article  Google Scholar 

  103. 103.

    Høye, T. T., Post, E., Meltofte, H., Schmidt, N. M. & Forchhammer, M. C. Rapid advancement of spring in the High Arctic. Curr. Biol. 17, R449–R451 (2007).

    Article  CAS  Google Scholar 

  104. 104.

    Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).

    Article  Google Scholar 

  105. 105.

    Myers‐Smith, I. H. & Hik, D. S. Climate warming as a driver of tundra shrubline advance. J. Ecol. 106, 547–560 (2017).

    Article  Google Scholar 

  106. 106.

    Wang, D. et al. Impact of sensor degradation on the MODIS NDVI time series. Remote Sens. Environ. 119, 55–61 (2012).

    Article  Google Scholar 

  107. 107.

    Williams, L. et al. Biological soil crusts of Arctic Svalbard and of Livingston Island, Antarctica. Polar Biol. 40, 399–411 (2017).

    Article  Google Scholar 

  108. 108.

    Gallo, K., Ji, L., Reed, B., Dwyer, J. & Eidenshink, J. Comparison of MODIS and AVHRR 16-day normalized difference vegetation index composite data. Geophys. Res. Lett. 31, (2004).

  109. 109.

    Shi, C. & Wang, L. Incorporating spatial information in spectral unmixing: a review. Remote Sens. Environ. 149, 70–87 (2014).

    Article  Google Scholar 

  110. 110.

    Raynolds, M. K., Walker, D. A., Epstein, H. E., Pinzon, J. E. & Tucker, C. J. A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI. Remote Sens. Lett. 3, 403–411 (2012).

    Article  Google Scholar 

  111. 111.

    Anderson, C. B. Biodiversity monitoring, Earth observations and the ecology of scale. Ecol. Lett. 21, 1572–1585 (2018).

    Article  Google Scholar 

  112. 112.

    Estes, L. et al. The spatial and temporal domains of modern ecology. Nat. Ecol. Evol. 2, 819 (2018).

    Article  Google Scholar 

  113. 113.

    Woodcock, C. E. & Strahler, A. H. The factor of scale in remote sensing. Remote Sens. Environ. 21, 311–332 (1987).

    Article  Google Scholar 

  114. 114.

    Buitenwerf, R., Rose, L. & Higgins, S. I. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Change 5, 364–368 (2015).

    Article  Google Scholar 

  115. 115.

    White, M. A. et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob. Change Biol. 15, 2335–2359 (2009).

    Article  Google Scholar 

  116. 116.

    Tape, K. D., Sturm, M. & Racine, C. H. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Change Biol. 12, 686–702 (2006).

    Article  Google Scholar 

  117. 117.

    Richardson, A. D. et al. Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery. Sci. Data 5, 180028 (2018).

    Article  Google Scholar 

  118. 118.

    Euskirchen, E. S., Bret-Harte, M. S., Shaver, G. R., Edgar, C. W. & Romanovsky, V. E. Long-term release of carbon dioxide from Arctic tundra ecosystems in Alaska. Ecosystems 20, 960–974 (2017).

    CAS  Article  Google Scholar 

  119. 119.

    Duffy, J. P. et al. Location, location, location: considerations when using lightweight drones in challenging environments. Remote Sens. Ecol. Cons. 4, 7–19 (2018).

    Article  Google Scholar 

  120. 120.

    Porter, C. et al. ArcticDEM Version 1. (2018).

  121. 121.

    Dash, J. & Ogutu, B. O. Recent advances in space-borne optical remote sensing systems for monitoring global terrestrial ecosystems. Prog. Phys. Geogr. 40, 322–351 (2016).

    Article  Google Scholar 

  122. 122.

    Luus, K. A. et al. Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence. Geophys. Res. Lett. 44, 1564–1573 (2017).

    Article  Google Scholar 

  123. 123.

    Forkel, M. et al. Identifying environmental controls on vegetation greenness phenology through model–data integration. Biogeosciences 11, 7025–7050 (2014).

    Article  Google Scholar 

  124. 124.

    Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 14, e1002415 (2016).

    Article  CAS  Google Scholar 

  125. 125.

    Arndt, K. et al. Arctic greening associated with lengthening growing seasons in Northern Alaska. Environ. Res. Lett. 14, 125018 (2019).

    Article  Google Scholar 

  126. 126.

    May, J. L., Parker, T., Unger, S. & Oberbauer, S. F. Short term changes in moisture content drive strong changes in Normalized Difference Vegetation Index and gross primary productivity in four Arctic moss communities. Remote Sens. Environ. 212, 114–120 (2018).

    Article  Google Scholar 

  127. 127.

    Vickers, H. et al. Changes in greening in the high Arctic: insights from a 30 year AVHRR max NDVI dataset for Svalbard. Environ. Res. Lett. 11, 105004 (2016).

    Article  Google Scholar 

  128. 128.

    Loranty, M. M. et al. Vegetation indices do not capture forest cover variation in upland Siberian larch forests. Remote Sens. 10, 1686 (2018).

    Article  Google Scholar 

  129. 129.

    Tian, F. et al. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sens. Environ. 163, 326–340 (2015).

    Article  Google Scholar 

  130. 130.

    Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article  Google Scholar 

  131. 131.

    Post, E. Erosion of community diversity and stability by herbivore removal under warming. Proc. R. Soc. B 280, 20122722 (2013).

    Article  Google Scholar 

  132. 132.

    Lange. M. & Doktor, D. phenex: auxiliary functions for phenological data analysis. (2015).

Download references


We thank the Inuvialuit and Greenlandic People for the opportunity to conduct field research on their land. Data collection on Qikiqtaruk–Herschel Island was funded by the UK Natural Environment Research Council (NERC) NE/M016323/1 (to I.H.M.-S.) and a National Geographic Society grant CP-061R-17 and a Parrot Climate Innovation Grant (to J.T.K.). Data collection at Kangerlussuaq, Greenland was supported by the US National Science Foundation (NSF) grants 0724711, 0713994, 0732168, 0902125, 1107381, 1525636, 1748052 and the National Geographic Society (to E.P.), as well as an Arctic Institute of North America Grant-in-Aid (to C.J.). The sTundra working group was supported by sDiv, the Synthesis Centre of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig (DFG FZT 118). The Event Drivers of Arctic Browning workshop was funded by P3-Plant Production and Protection ( Several members of the team are supported by the NASA ABoVE program ( Additional funding was provided by the Research Council of Norway grant 287402 (to J.W.B. and H.T.) and 294948 (to F.S., J.W.B., A.B., H.T. and F.-J.W.P.), the NERC doctoral training partnership grant NE/L002558/1 (to J.J.A. and H.J.D.T.), the US NSF grants OPP-15-04134, AGS-15-02150 and OPP-16-03473 (to L.A.-H.), the Natural Sciences and Engineering Research Council of Canada and the Canadian Centennial Scholarship Fund (to S.A.-B.), the Academy of Finland decision 256991 and JPI Climate 291581 (to B.C.F.), the NASA ABoVE grants NNX17AE44G and NNX17AE13G (to S.J.G. and L.T.B.), NSF grants PLR-0632263, PLR-0856516, PLR-1432277, PLR-1504224, PLR-1836839 (to R.D.H.), the US NSF grant PLR-1417745 (to M.M.L.), an NERC IRF NE/L011859/1 (to M.M.-F.), Independent Research Fund Denmark 7027-00133B and Villum Fonden VKR023456 (to S.N.), the Norwegian Research Council grants 230970 and 274711 and the Swedish Research Council registration 2017-05268 (to F.-J.W.P.), University of Zurich Research Priority Program on Global Change and Biodiversity (to G.S.-S.) and the US NSF grants OPP-1108425 and PLR-1108425 (to P.F.S.).

Author information




I.H.M.-S. and J.T.K. conducted the analyses and wrote the manuscript with contributions from all authors. G.K.P., J.W.B. and H.E.E. contributed substantially to early versions of the manuscript. I.H.M.-S., J.T.K., J.J.A., C.J., S.A.-B., A.M.C., H.J.D.T. and E.P. collected drone and in-situ data. This paper results from two collaborations: the sTundra working group at the German Centre for Integrative Biodiversity Research (iDiv) led by I.H.M.-S., S.C.E. and A.D.B., and the ‘Event Drivers of Arctic Browning Workshop’ at the University of Sheffield led by G.K.P.

Corresponding authors

Correspondence to Isla H. Myers-Smith or Jeffrey T. Kerby.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Matthias Forkel and John Gamon for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Myers-Smith, I.H., Kerby, J.T., Phoenix, G.K. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Chang. 10, 106–117 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing