Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Clam feeding plasticity reduces herbivore vulnerability to ocean warming and acidification


Ocean warming and acidification affect species populations, but how interactions within communities are affected and how this translates into ecosystem functioning and resilience remain poorly understood. Here we demonstrate that experimental ocean warming and acidification significantly alters the interaction network among porewater nutrients, primary producers, herbivores and burrowing invertebrates in a seafloor sediment community, and is linked to behavioural plasticity in the clam Scrobicularia plana. Warming and acidification induced a shift in the clam’s feeding mode from predominantly suspension feeding under ambient conditions to deposit feeding with cascading effects on nutrient supply to primary producers. Surface-dwelling invertebrates were more tolerant to warming and acidification in the presence of S. plana, most probably due to the stimulatory effect of the clam on their microalgal food resources. This study demonstrates that predictions of population resilience to climate change require consideration of non-lethal effects such as behavioural changes of key species.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of warming and acidification on clam feeding behaviour as revealed from hydraulic porewater signatures.
Fig. 2: Effects of combined warming and acidification and S. plana on sediment abiotic properties.
Fig. 3: Effects of combined warming and acidification and S. plana on sediment fauna.
Fig. 4: Changes in ecosystem interaction networks associated with combined warming and acidification.

Data availability

The data supporting the findings of this study are available at the Marine Data Archive ( via or from the corresponding author on reasonable request. Source data for Figs. 13 and Extended Data Fig. 1 are provided with the paper.


  1. Tuomainen, U. & Candolin, U. Behavioural responses to human-induced environmental change. Biol. Rev. 86, 640–657 (2011).

    Article  Google Scholar 

  2. Zarnetske, P. L., Skelly, D. K. & Urban, M. C. Biotic multipliers of climate change. Science 336, 1516–1518 (2012).

    Article  CAS  Google Scholar 

  3. Dupont, S. & Pörtner, H. Get ready for ocean acidification. Nature 489, 429 (2013).

    Article  CAS  Google Scholar 

  4. Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).

    Article  Google Scholar 

  5. Nagelkerken, I. & Munday, P. L. Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Glob. Change Biol. 22, 974–989 (2016).

    Article  Google Scholar 

  6. Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).

    Article  Google Scholar 

  7. Harvey, B. P., Gwynn-Jones, D. & Moore, P. J. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol. Evol. 3, 1016–1030 (2013).

    Article  Google Scholar 

  8. Belkin, I. M. Rapid warming of large marine ecosystems. Prog. Oceanogr. 81, 207–213 (2009).

    Article  Google Scholar 

  9. Provoost, P., van Heuven, S., Soetaert, K., Laane, R. W. P. M. & Middelburg, J. J. Seasonal and long-term changes in pH in the Dutch coastal zone. Biogeosciences 7, 3869–3878 (2010).

    Article  CAS  Google Scholar 

  10. Middelburg, J. J., Soetaert, K. & Herman, P. M. J. Empirical relationships for use in global diagenetic models. Deep-Sea Res. Pt I 44, 327–344 (1997).

    Article  CAS  Google Scholar 

  11. Snelgrove, P. V. R. et al. Global carbon cycling on a heterogeneous seafloor. Trends Ecol. Evol. 33, 96–105 (2018).

    Article  Google Scholar 

  12. Schade, H. et al. Simulated leakage of high pCO2 water negatively impacts bivalve dominated infaunal communities from the Western Baltic Sea. Sci. Rep. 6, 31447 (2016).

    Article  CAS  Google Scholar 

  13. Alsterberg, C., Eklöf, J. S., Gamfeldt, L., Havenhand, J. N. & Sundbäck, K. Consumers mediate the effects of experimental ocean acidification and warming on primary producers. Proc. Natl Acad. Sci. USA 110, 8603–8608 (2013).

    Article  CAS  Google Scholar 

  14. Chennu, A. et al. Effects of bioadvection by Arenicola marina on microphytobenthos in permeable sediments. PLoS ONE 10, e0134236 (2015).

    Article  CAS  Google Scholar 

  15. Wanink, J. H. & Zwarts, L. Rate-maximizing optimality models predict when oystercatchers exploit a cohort of the bivalve Scrobicularia plana over a 7-year time span. J. Anim. Ecol. 70, 150–158 (2001).

    Article  Google Scholar 

  16. Clare, D. S., Spencer, M., Robinson, L. A. & Frid, C. L. J. Species densities, biological interactions and benthic ecosystem functioning: an in situ experiment. Mar. Ecol. Prog. Ser. 547, 149–161 (2016).

    Article  Google Scholar 

  17. Hughes, R. N. A study of feeding in Scrobicularia plana. J. Mar. Biol. Assoc. UK 49, 805–823 (1969).

    Article  Google Scholar 

  18. Blackford, J. et al. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage. Nat. Clim. Change 4, 1011–1016 (2014).

    Article  CAS  Google Scholar 

  19. Michaelidis, B., Ouzounis, C., Paleras, A. & Portner, H. O. Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar. Ecol. Prog. Ser. 293, 109–118 (2005).

    Article  Google Scholar 

  20. Volkenborn, N. & Reise, K. Lugworm exclusion experiment: responses by deposit feeding worms to biogenic habitat transformations. J. Exp. Mar. Biol. Ecol. 330, 169–179 (2006).

    Article  Google Scholar 

  21. Nielsen, O. I., Gribsholt, B., Kristensen, E. & Revsbech, N. P. Microscale distribution of oxygen and nitrate in sediment inhabited by Nereis diversicolor: spatial patterns and estimated reaction rates. Aquat. Microb. Ecol. 34, 23–32 (2004).

    Article  Google Scholar 

  22. Stief, P. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications. Biogeosciences 10, 7829–7846 (2013).

    Article  CAS  Google Scholar 

  23. Volkenborn, N. et al. Intermittent bioirrigation and oxygen dynamics in permeable sediments: an experimental and modeling study of three tellinid bivalves. J. Mar. Res. 70, 794–823 (2012).

    Article  CAS  Google Scholar 

  24. Lopez-Urrutia, A., Martin, E. S., Harris, R. P. & Irigoien, X. Scaling the metabolic balance of the oceans. Proc. Natl Acad. Sci. USA 103, 8739–8744 (2006).

    Article  CAS  Google Scholar 

  25. Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).

    Article  Google Scholar 

  26. Moens, T. et al. Diatom feeding across trophic guilds in tidal flat nematodes, and the importance of diatom cell size. J. Sea Res. 92, 125–133 (2014).

    Article  Google Scholar 

  27. Beman, J. M. et al. Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proc. Natl Acad. Sci. USA 108, 208–213 (2011).

    Article  CAS  Google Scholar 

  28. Braeckman, U. et al. Empirical evidence reveals seasonally dependent reduction in nitrification in coastal sediments subjected to near future ocean acidification. PLoS ONE 9, e108153 (2014).

    Article  CAS  Google Scholar 

  29. Thomsen, J., Casties, I., Pansch, C., Körtzinger, A. & Melzner, F. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Glob. Change Biol. 19, 1017–1027 (2013).

    Article  Google Scholar 

  30. Rossoll, D. et al. Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS ONE 7, e34737 (2012).

    Article  CAS  Google Scholar 

  31. Mora, C. et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11, e1001682 (2013).

    Article  CAS  Google Scholar 

  32. Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 0084 (2017).

    Article  Google Scholar 

  33. Pierrot, D., Lewis, E. & Wallace, D. W. R. MS Excel Program Developed for CO 2 System Calculations ORNL/CDIAC-105a (Carbon Dioxide Information Analysis Center, 2006).

  34. Zeebe, R. & Wolf-Gladrow, D. CO 2 in Seawater: Equilibrium, Kinetics, Isotopes Vol. 65 (Elsevier, 2001).

  35. Van Heuven, S., Pierrot, D., Rae, J. W. B., Lewis, E. & Wallace, D. W. R. MATLAB Program Developed for CO 2 System Calculations ORNL/CDIAC-105b (Carbon Dioxide Information Analysis Center, 2011).

  36. Wethey, D. S. & Woodin, S. A. Infaunal hydraulics generate porewater pressure signals. Biol. Bull. 209, 139–145 (2005).

    Article  Google Scholar 

  37. Woodin, S. A., Wethey, D. S. & Volkenborn, N. Infaunal hydraulic ecosystem engineers: cast of characters and impacts. Integr. Comp. Biol. 50, 176–187 (2010).

    Article  Google Scholar 

  38. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  39. Van Colen, C. et al. Macrobenthic recovery from hypoxia in an estuarine tidal mudflat. Mar. Ecol. Prog. Ser. 372, 31–42 (2008).

    Article  CAS  Google Scholar 

  40. Dickson, A.G. in Guide to Best Practices for Ocean Acidification Research and Data Reporting (eds Riebesell, U. et al.) 17–40 (Publications Office of the European Union, 2011).

  41. Wright, S.W. & Jeffrey, S.W. in Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods (eds Jeffrey, S.W. et al.) 327–341 (UNESCO, 1997).

  42. Campanyà-llovet, N., Snelgrove, P. V. R. & Parrish, C. C. Rethinking the importance of food quality in marine benthic food webs. Prog. Oceanogr. 156, 240–251 (2017).

    Article  Google Scholar 

  43. Rosseel, Y. lavaan: An R package for structural equation modeling and more. R package version 0.3-1 (BETA) (2011).

  44. Michaud, E., Desrosiers, G., Mermillod-Blondin, F., Sundby, B. & Stora, G. The functional group approach to bioturbation: II. the effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment–water interface. J. Exp. Mar. Biol. Ecol. 337, 178–189 (2006).

    Article  CAS  Google Scholar 

  45. Herman, P. M. J., Middelburg, J. J., Widdows, J., Lucas, C. H. & Heip, C. H. R. Stable isotopes as trophic tracers: combining field sampling and manipulative labelling of food resources for macrobenthos. Mar. Ecol. Prog. Ser. 204, 79–92 (2000).

    Article  CAS  Google Scholar 

  46. Weerman, E. J. et al. Changes in diatom patch-size distribution and degradation in a spatially self-organized intertidal mudflat ecosystem. Ecol. Soc. Am. 93, 608–618 (2012).

    CAS  Google Scholar 

  47. Sahan, E. et al. Community structure and seasonal dynamics of diatom biofilms and associated grazers in intertidal mudflats. Aquat. Microb. Ecol. 47, 253–266 (2007).

    Article  CAS  Google Scholar 

  48. Hiddink, J. G., Ter Hofstede, R. & Wolff, W. J. Predation of intertidal infauna on juveniles of the bivalve Macoma balthica. J. Sea Res. 47, 141–159 (2002).

    Article  Google Scholar 

  49. Scaps, P. A review of the biology, ecology and potential use of the common ragworm Hediste diversicolor (O. F. Müller) (Annelida: Polychaeta). Hydrobiologia 470, 203–218 (2002).

    Article  Google Scholar 

  50. Kline, R. B. Principles and Practice of Structural Equation Modeling (Guilford Publications, 2015).

  51. Thrush, S. F. et al. Experimenting with ecosystem interaction networks in search of threshold potentials in real-world marine ecosystems. Ecology 95, 1451–1457 (2014).

    Article  Google Scholar 

  52. Lomas, M. W. & Glibert, P. M. Temperature regulation of nitrate uptake: a novel hypothesis about nitrate uptake and reduction in cool-water diatoms. Limnol. Oceanogr. 44, 556–572 (1999).

    Article  CAS  Google Scholar 

  53. Glibert, P. M. et al. Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnol. Oceanogr. 61, 165–197 (2016).

    Article  CAS  Google Scholar 

  54. Norkko, A., Villna, A., Norkko, J., Valanko, S. & Pilditch, C. Size matters: implications of the loss of large individuals for ecosystem function. Sci. Rep. 3, 1–7 (2013).

    Article  Google Scholar 

  55. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 51 (2015).

    Article  Google Scholar 

  56. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest: Tests in linear mixed effects models. R package version 2–0 (2015).

Download references


The research leading to the results presented in this publication was carried out with infrastructure funded by EMBRC Belgium - FWO project GOH3817N. This work was co-funded by a MARES Joint Doctorate programme grant (2012-1720/001-001-EMJD) to E.Z.O. C.V.C. acknowledges the Research Foundation Flanders (FWO) for his postdoctoral research fellow grant (FWO-11.2.380.11.N.00). Pressure sensor development was funded by grants from the US Office of Naval Research (N00014-0310352) and the US National Science Foundation (OCE 0928002) to S.A.W. and D.S.W. Additional funding for this project was obtained from the Special Research Fund (BOF) from Ghent University through GOA projects 01GA1911W and 01G02617. We acknowledge Flanders Marine Institute (VLIZ) for the total alkalinity measurements.

Author information

Authors and Affiliations



C.V.C. and E.Z.O. conceived and carried out the experiments. C.V.C., E.Z.O., M.B., E.A. and S.A.W. analysed the data. C.V.C., M.B., D.S.W., T.M. and S.A.W. contributed materials. C.V.C. and E.Z.O. co-wrote the manuscript. All authors proofread the manuscript, provided input and approved the manuscript.

Corresponding author

Correspondence to Carl Van Colen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Paul Snelgrove, Cristian Vargas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Tables 1–4.

Reporting Summary

Source data

Source Data Fig. 1

Numerical data.

Source Data Fig. 2

Numerical data.

Source Data Fig. 3

Numerical data.

Source Data Extended Data Fig. 1

Numerical data.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Colen, C., Ong, E.Z., Briffa, M. et al. Clam feeding plasticity reduces herbivore vulnerability to ocean warming and acidification. Nat. Clim. Chang. 10, 162–166 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing