Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Natural halogens buffer tropospheric ozone in a changing climate

Abstract

Reactive atmospheric halogens destroy tropospheric ozone (O3), an air pollutant and greenhouse gas. The primary source of natural halogens is emissions from marine phytoplankton and algae, as well as abiotic sources from ocean and tropospheric chemistry, but how their fluxes will change under climate warming, and the resulting impacts on O3, are not well known. Here, we use an Earth system model to estimate that natural halogens deplete approximately 13% of tropospheric O3 in the present-day climate. Despite increased levels of natural halogens through the twenty-first century, this fraction remains stable due to compensation from hemispheric, regional and vertical heterogeneity in tropospheric O3 loss. Notably, this halogen-driven O3 buffering is projected to be greatest over polluted and populated regions, due mainly to iodine chemistry, with important implications for air quality.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Global and annual mean changes in natural halogens.
Fig. 2: Global and annual mean tropospheric O3 column time series from 2000 to 2100.
Fig. 3: Zonal mean tropospheric O3 loss due to reactive halogens.
Fig. 4: Vertically resolved changes in partial column O3 loss due to reactive halogens between the present (1990–2009) and the end of the century (2080–2099).
Fig. 5: Maps of halogen-driven near-surface O3 loss change between the present (1990–2009) and the end of the century (2080–2099).
Fig. 6: Halogen-driven near-surface O3 loss time series from 2000 to 2100.

Data availability

The data used in this study are available from the corresponding author on reasonable request.

Code availability

The software code for the CESM model is available from http://www.cesm.ucar.edu/models/.

References

  1. 1.

    M. D. Shindell, et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 659–740 (IPCC, Cambridge Univ. Press, 2013).

  2. 2.

    Environmental Effects of Ozone Depletion and Its Interaction with Climate Change: 2014 Assessment (UNEP, 2015).

  3. 3.

    Wild, O. Modelling the global tropospheric ozone budget: exploring the variability in current models. Atmos. Chem. Phys. 7, 2643–2660 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    Monks, P. S. et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 15, 8889–8973 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Read, K. A. et al. Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean. Nature 453, 1232–1235 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    Saiz-Lopez, A. et al. Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere. Atmos. Chem. Phys. 12, 3939–3949 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    Saiz-Lopez, A. et al. Iodine chemistry in the troposphere and its effect on ozone. Atmos. Chem. Phys. 14, 13119–13143 (2014).

    Article  CAS  Google Scholar 

  8. 8.

    Prados-Roman, C. et al. A negative feedback between anthropogenic ozone pollution and enhanced ocean emissions of iodine. Atmos. Chem. Phys. 15, 2215–2224 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Saiz-Lopez, A. & von Glasow, R. Reactive halogen chemistry in the troposphere. Chem. Soc. Rev. 41, 6448 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Simpson, W. R., Brown, S. S., Saiz-Lopez, A., Thornton, J. A. & Von Glasow, R. Tropospheric halogen chemistry: sources, cycling, and impacts. Chem. Rev. 115, 4035–4062 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Fernandez, R. P., Salawitch, R. J., Kinnison, D. E., Lamarque, J. F. & Saiz-Lopez, A. Bromine partitioning in the tropical tropopause layer: implications for stratospheric injection. Atmos. Chem. Phys. 14, 13391–13410 (2014).

    Article  CAS  Google Scholar 

  12. 12.

    Sherwen, T. et al. Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem. Atmos. Chem. Phys. 16, 12239–12271 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Ordóñez, C. et al. Bromine and iodine chemistry in a global chemistry–climate model: description and evaluation of very short-lived oceanic sources. Atmos. Chem. Phys. 12, 1423–1447 (2012).

    Article  CAS  Google Scholar 

  14. 14.

    Carpenter, L. J. et al. Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine. Nat. Geosci. 6, 108–111 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    MacDonald, S. M. et al. A laboratory characterisation of inorganic iodine emissions from the sea surface: dependence on oceanic variables and parameterisation for global modelling. Atmos. Chem. Phys. 14, 5841–5852 (2014).

    Article  CAS  Google Scholar 

  16. 16.

    Scientific Assessment of Ozone Depletion: 2014 Global Ozone Research and Monitoring Project Report 55 (WMO, 2014).

  17. 17.

    Scientific Assessment of Ozone Depletion: 2018 Global Ozone Research and Monitoring Project Report 58 (WMO, 2018).

  18. 18.

    Prados-Roman, C. et al. Iodine oxide in the global marine boundary layer. Atmos. Chem. Phys. 15, 583–593 (2015).

    Article  CAS  Google Scholar 

  19. 19.

    Ziska, F., Quack, B., Tegtmeier, S., Stemmler, I. & Krüger, K. Future emissions of marine halogenated very-short lived substances under climate change. J. Atmos. Chem. 74, 245–260 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Cuevas, C. A. et al. Rapid increase in atmospheric iodine levels in the North Atlantic since the mid-20th century. Nat. Commun. 9, 1452 (2018).

    Article  CAS  Google Scholar 

  21. 21.

    Legrand, M. et al. Alpine ice evidence of a three-fold increase in atmospheric iodine deposition since 1950 in Europe due to increasing oceanic emissions. Proc. Natl Acad. Sci. USA 115, 12136–12141 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Falk, S. et al. Brominated VSLS and their influence on ozone under a changing climate. Atmos. Chem. Phys. 17, 11313–11329 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Tilmes, S. et al. Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry–Climate Model Initiative (CCMI). Geosci. Model Dev. 9, 1853–1890 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Bell, N. et al. Methyl iodide: atmospheric budget and use as a tracer of marine convection in global models. J. Geophys. Res. Atmos. 107, ACH 8-1–ACH 8-12 (2002).

    Article  CAS  Google Scholar 

  25. 25.

    Ziska, F. et al. Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide. Atmos. Chem. Phys. 13, 8915–8934 (2013).

    Article  CAS  Google Scholar 

  26. 26.

    Lennartz, S. T. et al. Modelling marine emissions and atmospheric distributions of halocarbons and dimethyl sulfide: the influence of prescribed water concentration vs. prescribed emissions. Atmos. Chem. Phys. 15, 11753–11772 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Krumhardt, K. M., Lovenduski, N. S., Long, M. C. & Lindsay, K. Avoidable impacts of ocean warming on marine primary production: insights from the CESM ensembles. Glob. Biogeochem. Cycles 31, 114–133 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Laufkötter, C. et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12, 6955–6984 (2015).

    Article  Google Scholar 

  29. 29.

    Laufkötter, C. et al. Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem. Biogeosciences 13, 4023–4047 (2016).

    Article  CAS  Google Scholar 

  30. 30.

    Stemmler, I., Hense, I. & Quack, B. Marine sources of bromoform in the global open ocean—global patterns and emissions. Biogeosciences 12, 1967–1981 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    van Vuuren et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).

    Article  Google Scholar 

  32. 32.

    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).

    CAS  Article  Google Scholar 

  33. 33.

    Fernandez, R. P., Kinnison, D. E., Lamarque, J., Tilmes, S. & Saiz-lopez, A. Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century. Atmos. Chem. Phys. 17, 1673–1688 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    Iglesias-Suarez, F. et al. Key drivers of ozone change and its radiative forcing over the 21st century. Atmos. Chem. Phys. 18, 6121–6139 (2018).

    CAS  Article  Google Scholar 

  35. 35.

    Jacob, D. J. & Winner, D. A. Effect of climate change on air quality. Atmos. Environ. 43, 51–63 (2009).

    CAS  Article  Google Scholar 

  36. 36.

    Fiore, A. M. et al. Global air quality and climate. Chem. Soc. Rev. 41, 6663–6683 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    Young, P. J. et al. Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 13, 2063–2090 (2013).

    Article  CAS  Google Scholar 

  38. 38.

    IPCC Special Report on Emissions Scenarios (eds Nakicenovic, N. & Swart, R.) (Cambridge Univ. Press, 2000).

  39. 39.

    Rao, S. et al. Future air pollution in the shared socio-economic pathways. Glob. Environ. Chang. 42, 346–358 (2017).

    Article  Google Scholar 

  40. 40.

    Lamarque, J. F. et al. CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. Geosci. Model Dev. 5, 369–411 (2012).

    CAS  Article  Google Scholar 

  41. 41.

    Neale, R. B. et al. The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Clim. 26, 5150–5168 (2013).

    Article  Google Scholar 

  42. 42.

    Saiz-Lopez, A. et al. Injection of iodine to the stratosphere. Geophys. Res. Lett. 42, 6852–6859 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    Ganzeveld, L., Helmig, D., Fairall, C. W., Hare, J. & Pozzer, A. Atmosphere–ocean ozone exchange: a global modeling study of biogeochemical, atmospheric, and waterside turbulence dependencies. Glob. Biogeochem. Cycles https://doi.org/10.1029/2008GB003301 (2009).

  44. 44.

    Morgenstern, O. et al. Review of the global models used within the Chemistry-Climate Model Initiative (CCMI). Geosci. Model Dev. Discuss. 10, 639–671 (2016).

    Article  Google Scholar 

  45. 45.

    Scientific Assessment of Ozone Depletion: 2010 Global Ozone Research and Monitoring Project Report 52 (WMO, 2011).

  46. 46.

    Saiz-Lopez, A. & Fernandez, R. P. On the formation of tropical rings of atomic halogens: causes and implications. Geophys. Res. Lett. 43, 2928–2935 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Saiz-Lopez, A. et al. Nighttime atmospheric chemistry of iodine. Atmos. Chem. Phys. 16, 15593–15604 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Liss, P. S. & Slater, P. G. Flux of gases across the air-sea interface. Nature 247, 181–184 (1974).

    CAS  Article  Google Scholar 

  49. 49.

    Johnson, M. T. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas. Ocean Sci. 6, 913–932 (2010).

    CAS  Article  Google Scholar 

  50. 50.

    Abrahamsson, K., Granfors, A., Ahnoff, M., Cuevas, C. A. & Saiz-Lopez, A. Organic bromine compounds produced in sea ice in Antarctic winter. Nat. Commun. 9, 5291 (2018).

    CAS  Article  Google Scholar 

  51. 51.

    Bates, N. R. & Merlivat, L. The influence of short-term wind variability on air-sea CO2 exchange. Geophys. Res. Lett. 28, 3281–3284 (2001).

    CAS  Article  Google Scholar 

  52. 52.

    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    Article  Google Scholar 

  53. 53.

    Chance, R., Baker, A. R., Carpenter, L. & Jickells, T. D. The distribution of iodide at the sea surface. Environ. Sci. Process. Impacts 16, 1841–1859 (2014).

    CAS  Article  Google Scholar 

  54. 54.

    CISL Cheyenne: HPE/SGI ICEXA System (NCAR Community Computing, 2017); https://doi.org/10.5065/D6RX99HX

Download references

Acknowledgements

This study has received funding from the European Research Council Executive Agency under the European Union’s Horizon 2020 Research and Innovation programme (Project ‘ERC-2016-COG 726349 CLIMAHAL’). R.H. is supported by a NERC Independent Research Fellowship (NE/N014375/1). CAM-Chem is a component of the Community Earth System Model (CESM), which is supported by the NSF and the Office of Science of the US Department of Energy. Computing resources were provided by NCAR’s Climate Simulation Laboratory, which is sponsored by the NSF and other agencies. Computing resources, support and data storage were provided and are maintained by the Computational and Information System Laboratory from the National Center for Atmospheric Research (CISL)54.

Author information

Affiliations

Authors

Contributions

A.S.-L. devised the research. F.I.-S. and A.S.-L. initiated the study in collaboration with A.B., R.P.F., C.A.C., D.E.K., S.T., J-F.L., M.C.L. and R.H.; F.I.-S., with the help of A.B. and R.P.F., developed and performed the CAM-Chem simulations. All authors discussed the findings and commented on the manuscript. F.I.-S. and A.S.-L. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Alfonso Saiz-Lopez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Andrea Stenke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Evaluation of halogens abundances and distributions in CAM-Chem, Supplementary Tables 1–9 and Figs. 1–11.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iglesias-Suarez, F., Badia, A., Fernandez, R.P. et al. Natural halogens buffer tropospheric ozone in a changing climate. Nat. Clim. Chang. 10, 147–154 (2020). https://doi.org/10.1038/s41558-019-0675-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing