The Pacific Decadal Oscillation less predictable under greenhouse warming


The Pacific Decadal Oscillation (PDO) is the most prominent form of decadal variability over the North Pacific, characterized by its horseshoe-shaped sea surface temperature anomaly pattern1,2. The PDO exerts a substantial influence on marine ecosystems, fisheries and agriculture1,2,3. Through modulating global mean temperature, the phase shift of the PDO at the end of the twentieth century is suggested to be an influential factor in the recent surface warming hiatus4,5. Determining the predictability of the PDO in a warming climate is therefore of great importance6. By analysing future climate under different emission scenarios simulated by the Coupled Model Intercomparison Project phase 5 (ref. 7), we show that the prediction lead time and the associated amplitude of the PDO decrease sharply under greenhouse warming conditions. This decrease is largely attributable to a warming-induced intensification of oceanic stratification, which accelerates the propagation of Rossby waves, shortening the PDO lifespan and suppressing its amplitude by limiting its growth time. Our results suggest that greenhouse warming will make prediction of the PDO more challenging, with far-reaching ramifications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Assessing predictability of the PDO.
Fig. 2: Reduced PDO predictability under greenhouse warming.
Fig. 3: Mechanisms for projected reduction in PDO predictability.

Data availability

Data related to this paper can be downloaded from the following websites: HadISST v1.1,; ERSST v5,; ERSST v4,; ERSST v3b,; COBE SST2,; Kaplan SST v2,; SODA,; and CMIP5 database,

Code availability

Codes for performing the APT analyses and conducting theoretical model experiments are available on reasonable request from the corresponding authors.


  1. 1.

    Mantua, N. J. et al. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1080 (1997).

    Google Scholar 

  2. 2.

    Newman, M. et al. The Pacific Decadal Oscillation, revisited. J. Clim. 29, 4399–4427 (2016).

    Google Scholar 

  3. 3.

    Miller, A. J. & Schneider, N. Interdecadal climate regime dynamics in the North Pacific ocean: theories, observations and ecosystem impacts. Prog. Oceanogr. 47, 355–379 (2000).

    Google Scholar 

  4. 4.

    Kosaka, Y. & Xie, S. P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403 (2013).

    CAS  Google Scholar 

  5. 5.

    Meehl, G. A., Teng, H. & Arblaster, J. M. Climate model simulations of the observed early-2000s hiatus of global warming. Nat. Clim. Change 4, 898–902 (2014).

    Google Scholar 

  6. 6.

    Mochizuki, T. et al. Pacific Decadal Oscillation hindcasts relevant to near-term climate prediction. Proc. Natl Acad. Sci. USA 107, 1833–1837 (2010).

    CAS  Google Scholar 

  7. 7.

    Taylor, KarlE., Ronald, J. Stouffer & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Google Scholar 

  8. 8.

    Deser, C., Phillips, A. C. & Hurrell, J. W. Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during boreal winter since 1900. J. Clim. 17, 3109–3124 (2004).

    Google Scholar 

  9. 9.

    Mantua, N. J. & Hare, S. R. The Pacific Decadal Oscillation. J. Oceanogr. 58, 35–44 (2002).

    Google Scholar 

  10. 10.

    Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).

    Google Scholar 

  11. 11.

    Wang, C. et al. A global perspective on CMIP5 climate model biases. Nat. Clim. Change 4, 201–205 (2014).

    Google Scholar 

  12. 12.

    Kosaka, Y. & Xie, S. P. The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat. Geosci. 9, 669–673 (2016).

    Google Scholar 

  13. 13.

    Deser, C. et al. Uncertainty in climate change projections: the role of internal variability. Clim. Dynam. 38, 527–546 (2012).

    Google Scholar 

  14. 14.

    Xie, S. P., Kosaka, Y. & Okumura, Y. M. Distinct energy budgets for anthropogenic and natural changes during global warming hiatus. Nat. Geosci. 9, 29–33 (2016).

    CAS  Google Scholar 

  15. 15.

    Seager, R. et al. in Earth’s Climate: The Ocean–Atmosphere Interaction (eds Wang, C., Xie, S. P. & Carton, J. A.) 105–120 (American Geophysical Union, 2004).

  16. 16.

    Frankignoul, C. & Hasselmann, K. Stochastic climate models, Part II: application to sea-surface temperature anomalies and thermocline variability. Tellus 29, 289–305 (1977).

    Google Scholar 

  17. 17.

    Jin, F. F. A theory of interdecadal climate variability of the North Pacific ocean–atmosphere system. J. Clim. 10, 1821–1835 (1997).

    Google Scholar 

  18. 18.

    Wu, L. et al. Pacific decadal variability: the tropical Pacific mode and the North Pacific mode. J. Clim. 16, 1101–1120 (2003).

    Google Scholar 

  19. 19.

    Liu, Z. & Wu, L. Atmospheric response to North Pacific SST: the role of ocean–atmosphere coupling. J. Clim. 17, 1859–1882 (2004).

    Google Scholar 

  20. 20.

    Schneider, N., Miller, A. J. & Pierce, D. W. Anatomy of North Pacific decadal variability. J. Clim. 15, 586–605 (2002).

    Google Scholar 

  21. 21.

    Kwon, Y. O. & Deser, C. North Pacific decadal variability in the Community Climate System Model version 2. J. Clim. 20, 2416–2433 (2007).

    Google Scholar 

  22. 22.

    Yang, Y., Wu, L. & Fang, C. Will global warming suppress North Atlantic tripole decadal variability? J. Clim. 25, 2040–2055 (2012).

    Google Scholar 

  23. 23.

    Fang, C., Wu, L. & Zhang, X. The impact of global warming on the Pacific Decadal Oscillation and the possible mechanism. Adv. Atmos. Sci. 31, 118–130 (2014).

    Google Scholar 

  24. 24.

    Zhang, L. & Delworth, T. L. Simulated response of the Pacific Decadal Oscillation to climate change. J. Clim. 29, 5999–6018 (2016).

    Google Scholar 

  25. 25.

    Geng, T., Yang, Y. & Wu, L. On the mechanisms of Pacific decadal oscillation modulation in a warming climate. J. Clim. 32, 1443–1459 (2019).

    Google Scholar 

  26. 26.

    DelSole, T., Jia, L. & Tippett, M. K. Decadal prediction of observed and simulated sea surface temperatures. Geophys. Res. Lett. 40, 2773–2778 (2013).

    Google Scholar 

  27. 27.

    Srivastava, A. & DelSole, T. Decadal predictability without ocean dynamics. Proc. Natl Acad. Sci. USA 114, 2177–2182 (2017).

    CAS  Google Scholar 

  28. 28.

    Collins, M. Climate predictability on interannual to decadal time scales: the initial value problem. Clim. Dynam. 19, 671–692 (2002).

    Google Scholar 

  29. 29.

    Chelton, D. B. et al. Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr. 28, 433–460 (1998).

    Google Scholar 

  30. 30.

    Miller, A. J., Cayan, D. R. & White, W. B. A westward-intensified decadal change in the North Pacific thermocline and gyre-scale circulation. J. Clim. 11, 3112–3127 (1998).

    Google Scholar 

  31. 31.

    Goodman, J. & Marshall, J. A model of decadal middle latitude atmosphere–ocean coupled modes. J. Clim. 12, 621–641 (1999).

    Google Scholar 

  32. 32.

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Google Scholar 

  33. 33.

    Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAAs historical merged land–ocean temp analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

    Google Scholar 

  34. 34.

    Huang, B. et al. Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J. Clim. 28, 911–930 (2014).

    Google Scholar 

  35. 35.

    Huang, B. et al. Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5), upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Google Scholar 

  36. 36.

    Kaplan, A. et al. Analyses of global sea surface temperature 1856–1991. J. Geophys. Res. 103, 18567–18589 (1998).

    Google Scholar 

  37. 37.

    Hirahara, S., Ishii, M. & Fukuda, Y. Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 27, 57–75 (2014).

    Google Scholar 

  38. 38.

    Carton, J. A. & Giese, B. S. A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon. Weather Rev. 136, 2999–3017 (2008).

    Google Scholar 

  39. 39.

    DelSole, T. & Tippett, M. K. Average predictability time. Part I: theory. J. Atmos. Sci. 66, 1172–1187 (2009).

    Google Scholar 

  40. 40.

    DelSole, T. & Tippett, M. K. Average predictability time. Part II: seamless diagnoses of predictability on multiple time scales. J. Atmos. Sci. 66, 1188–1204 (2009).

    Google Scholar 

  41. 41.

    Lorenzo, E. N. Empirical Orthogonal Functions and Statistical Weather Prediction Statistical Forecast Project Report 1 (MIT Department of Meteorology, 1956).

  42. 42.

    Zhang, L., Delworth, T. L. & Jia, L. Diagnosis of decadal predictability of southern ocean sea surface temperature in the GFDL CM2.1 model. J. Clim. 30, 6309–6328 (2017).

    Google Scholar 

  43. 43.

    Jia, L. & DelSole, T. Diagnosis of multiyear predictability on continental scales. J. Clim. 24, 5108–5124 (2011).

    Google Scholar 

  44. 44.

    Boer, G. J. Long time-scale potential predictability in an ensemble of coupled climate models. Clim. Dynam. 23, 29–44 (2004).

    Google Scholar 

  45. 45.

    Boer, G. J. Decadal potential predictability of twenty-first century climate. Clim. Dynam. 36, 1119–1133 (2011).

    Google Scholar 

  46. 46.

    Fang, J. B. & Yang, X. Q. The relative roles of different physical processes in unstable midlatitude ocean–atmosphere interactions. J. Clim. 24, 1542–1558 (2011).

    Google Scholar 

Download references


L.W. is supported by a National Natural Science Foundation of China (NSFC) major project (grant nos 41490640 and 41490643). W.C. and G.W. are supported by CSHOR and the Earth Systems and Climate Change Hub of the Australian Government’s National Environmental Science Program. The Centre for Southern Hemisphere Oceans Research is a research partnership between QNLM and CSIRO. Y.Y and B.G are supported by NSFC projects (grant nos 41976005, 41606008, 41922039 and 91858102) and the National Key R&D Programme of China (grant no. 2016YFA0601803). We acknowledge the WCRP’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output.

Author information




L.W. and S.L. conceived and wrote the initial manuscript in discussion with W.C., Y.Y. and T.G. S.L. performed model analysis and generated final figures. T.G. conducted analysis of the theoretical coupled model. All authors contributed to interpreting results, discussion of the associated dynamics and improvement of this paper.

Corresponding authors

Correspondence to Lixin Wu or Wenju Cai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Tables 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wu, L., Yang, Y. et al. The Pacific Decadal Oscillation less predictable under greenhouse warming. Nat. Clim. Chang. 10, 30–34 (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing