Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A continuing need to revisit BECCS and its potential

Though critical to many projected pathways to meet global climate targets, the challenges facing biomass energy with carbon capture and storage have yet to enter the forefront of public dialogue.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Smith, P. et al. Nat. Clim. Change 6, 42 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Mander, S., Anderson, K., Larkin, A., Gough, C. & Vaughan, N. Energy Procedia 114, 6036–6043 (2017).

    Article  Google Scholar 

  3. 3.

    IPCC. Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  4. 4.

    Peters, G. P. & Geden, O. Nat. Clim. Change 7, 619–621 (2017).

    Article  Google Scholar 

  5. 5.

    Field, C. B. & Mach, K. J. Science 356, 706–707 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Perlack, R. D. et al. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (Oak Ridge National Laboratory, 2005).

  7. 7.

    Gough, C. et al. Glob. Sustain. 1, 1–9 (2018).

    Article  Google Scholar 

  8. 8.

    Gaede, J. & Meadowcroft, J. The Palgrave Handbook of the International Political Economy of Energy (eds Van de Graaf, T. et al.) 319–340 (Palgrave Macmillan, 2016).

  9. 9.

    Kern, F. et al. Technol. Forecast. Soc. Change 102, 250–260 (2016).

    Article  Google Scholar 

  10. 10.

    Baik, E. et al. Proc. Natl Acad. Sci. USA 115, 3290–3295 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    Sanchez, D. L. & Callaway, D. S. Appl. Energy 170, 437–444 (2016).

    Article  Google Scholar 

  12. 12.

    Thomas, G., Pidgeon, N. & Roberts, E. Energy Res. Soc. Sci. 46, 1–9 (2018).

    Article  Google Scholar 

  13. 13.

    National Academies of Sciences, Engineering and Medicine. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda (National Academies Press, 2018).

  14. 14.

    Laude, A. Mitig. Adapt. Strateg. Glob. Change https://doi.org/10.1007/s11027-019-09856-7 (2019).

  15. 15.

    Edwards, R. W. J. & Celia, M. A. Proc. Natl Acad. Sci. USA 115, E8815–E8824 (2018).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Galik.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Galik, C.S. A continuing need to revisit BECCS and its potential. Nat. Clim. Chang. 10, 2–3 (2020). https://doi.org/10.1038/s41558-019-0650-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing