Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The fate of Madagascar’s rainforest habitat

Abstract

Madagascar has experienced extensive deforestation and overharvesting, and anthropogenic climate change will compound these pressures. Anticipating these threats to endangered species and their ecosystems requires considering both climate change and habitat loss effects. The genus Varecia (ruffed lemurs), which is composed of two Critically Endangered forest-obligate species, can serve as a status indicator of the biodiverse eastern rainforest of Madagascar. Here, we combined decades of research to show that the suitable habitat for ruffed lemurs could be reduced by 29–59% from deforestation, 14–75% from climate change (representative concentration pathway 8.5) or 38–93% from both by 2070. If current protected areas avoid further deforestation, climate change will still reduce the suitable habitat by 62% (range: 38–83%). If ongoing deforestation continues, the suitable habitat will decline by 81% (range: 66–93%). Maintaining and enhancing the integrity of protected areas, where rates of forest loss are lower, will be essential for ensuring persistence of the diversity of the rapidly diminishing Malagasy rainforests.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Current and future predicted fragmentation class of the eastern Madagascar rainforest.
Fig. 2: Environmental suitability for ruffed lemurs for the present and the 2070s.
Fig. 3: Deforestation and the combined effects of deforestation and climate change on ruffed lemur habitat suitability for the Makira focal area.
Fig. 4: Deforestation and the combined effects of deforestation and climate change on ruffed lemur habitat suitability for the CAZ focal area.
Fig. 5: Deforestation and the combined effects of deforestation and climate change on ruffed lemur habitat suitability for the COFAV focal area.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request. Historical forest cover data were obtained from ref. 20. Climate coverages were obtained from ref. 82.

Code availability

All code required to reproduce the results is available at https://github.com/adamlilith/varecia.

References

  1. Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

    Article  CAS  Google Scholar 

  2. Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A. & Losos, E. Quantifying threats to imperiled species in the United States. Bioscience 48, 607–615 (1998).

    Article  Google Scholar 

  3. Hernández-Yáñez, H. et al. A systematic assessment of threats affecting the rare plants of the United States. Biol. Conserv. 203, 260–267 (2016).

    Article  Google Scholar 

  4. Gonzalez, P., Wang, F., Notaro, M., Vimont, D. J. & Williams, J. W. Disproportionate magnitude of climate change in United States national parks. Environ. Res. Lett. 13, 104001 (2018).

    Article  Google Scholar 

  5. Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 7, 205–208 (2017).

    Article  Google Scholar 

  6. Tingley, M. W., Estes, L. D. & Wilcove, D. S. Climate change must not blow conservation off course. Nature 500, 271–272 (2013).

    Article  CAS  Google Scholar 

  7. Brown, K. A., Parks, K. E., Bethell, C. A., Johnson, S. E. & Mulligan, M. Predicting plant diversity patterns in Madagascar: understanding the effects of climate and land cover change in a biodiversity hotspot. PLoS ONE 10, e0122721 (2015).

    Article  CAS  Google Scholar 

  8. Ganzhorn, J. U., Lowry, P. P., Schatz, G. E. & Sommer, S. The biodiversity of Madagascar: one of the world’s hottest hotspots on its way out. Oryx 35, 346–348 (2001).

    Article  Google Scholar 

  9. Dunham, A. E., Erhart, E. M., Overdorff, D. J. & Wright, P. C. Evaluating effects of deforestation, hunting, and El Niño events on a threatened lemur. Biol. Conserv. 141, 287–297 (2008).

    Article  Google Scholar 

  10. Dunham, A. E., Erhart, E. M. & Wright, P. C. Global climate cycles and cyclones: consequences for rainfall patterns and lemur reproduction in southeastern Madagascar. Glob. Change Biol. 17, 219–227 (2011).

    Article  Google Scholar 

  11. Brown, K. A. & Gurevitch, J. Long-term impacts of logging on forest diversity in Madagascar. Proc. Natl Acad. Sci. USA 101, 6045–6049 (2004).

    Article  CAS  Google Scholar 

  12. Park, D. S. & Razafindratsima, O. H. Anthropogenic threats can have cascading homogenizing effects on the phylogenetic and functional diversity of tropical ecosystems. Ecography 42, 148–161 (2019).

    Article  Google Scholar 

  13. O’Brien, S. et al. Decline of the Madagascar radiated tortoise Geochelone radiata due to overexploitation. Oryx 37, 338–343 (2003).

    Google Scholar 

  14. Barrett, M. A. & Ratsimbazafy, J. Luxury bushmeat trade threatens lemur conservation. Nature 461, 470 (2009).

    Article  CAS  Google Scholar 

  15. Borgerson, C., McKean, M. A., Sutherland, M. R. & Godfrey, L. R. Who hunts lemurs and why they hunt them. Biol. Conserv. 197, 124–130 (2016).

    Article  Google Scholar 

  16. Brook, C. E. et al. Population viability and harvest sustainability for Madagascar lemurs. Conserv. Biol. 33, 99–111 (2019).

    Article  Google Scholar 

  17. Watson, J. E. M., Whittaker, R. J. & Dawson, T. P. Avifaunal responses to habitat fragmentation in the threatened littoral forests of south-eastern Madagascar. J. Biogeogr. 31, 1791–1807 (2004).

    Article  Google Scholar 

  18. Harper, G. J., Steininger, M. K., Tucker, C. J., Juhn, D. & Hawkins, F. Fifty years of deforestation and forest fragmentation in Madagascar. Environ. Conserv. 34, 325–333 (2007).

    Article  Google Scholar 

  19. Razafindratsima, O. H. et al. Edge effects on components of diversity and above-ground biomass in a tropical rainforest. J. Appl. Ecol. 55, 977–985 (2018).

    Article  CAS  Google Scholar 

  20. Vieilledent, G. et al. Combining global tree cover loss data with historical national forest cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. Biol. Conserv. 222, 189–197 (2018).

    Article  Google Scholar 

  21. Kremen, C. et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320, 222–226 (2008).

    Article  CAS  Google Scholar 

  22. Hannah, L. Protected areas and climate change. Ann. NY Acad. Sci. 1134, 201–212 (2008).

    Article  Google Scholar 

  23. Fisher, B. L. & Girman, D. J. in Diversite et Endemism a Madagascar (eds Lourenco, W. R. & Goodman, S. M.) 331–344 (Société de Biogéographie, 2000).

  24. Greene, B. T., Lowe, W. H. & Likens, G. E. Forest succession and prey availability influence the strength and scale of terrestrial–aquatic linkages in a headwater salamander system. Freshw. Biol. 53, 2234–2243 (2008).

    Google Scholar 

  25. Vieites, D. R. et al. Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory. Proc. Natl Acad. Sci. USA 106, 8267–8272 (2009).

    Article  CAS  Google Scholar 

  26. The IUCN Red List of Threatened Species (IUCN, 2018).

  27. Jenkins, R. K. B. et al. Analysis of patterns of bushmeat consumption reveals extensive exploitation of protected species in eastern Madagascar. PLoS ONE 6, e27570 (2011).

    Article  CAS  Google Scholar 

  28. Balko, E. A. & Underwood, H. B. Effects of forest structure and composition on food availability for Varecia variegata at Ranomafana National Park, Madagascar. Am. J. Primatol. 66, 45–70 (2005).

    Article  Google Scholar 

  29. Borgerson, C. The effects of illegal hunting and habitat on two sympatric endangered primates. Int. J. Primatol. 36, 74–93 (2015).

    Article  Google Scholar 

  30. White, F. J., Overdorff, D. J., Balko, E. A. & Wright, P. C. Distribution of ruffed lemurs (Varecia variegata) in Ranomafana National Park, Madagascar. Folia Primatol. 64, 124–131 (1995).

    Article  Google Scholar 

  31. Baden, A. L. et al. Anthropogenic pressures explain population genetic structure in a critically endangered moist forest specialist, Varecia variegata. Sci. Rep. 9, 16276 (2019).

    Article  CAS  Google Scholar 

  32. Baden, A. L. et al. Species-level view of population structure and gene flow for a critically endangered primate (Varecia variegata). Ecol. Evol. 4, 2675–2692 (2014).

    Article  Google Scholar 

  33. Lehtinen, R. M., Ramanamanjato, J.-B. & Raveloarison, J. G. Edge effects and extinction proneness in a herpetofauna from Madagascar. Biodivers. Conserv. 12, 1357–1370 (2003).

    Article  Google Scholar 

  34. Farris, Z. J. et al. Threats to a rainforest carnivore community: a multi-year assessment of occupancy and co-occurrence in Madagascar. Biol. Conserv. 210, 116–124 (2017).

    Article  Google Scholar 

  35. Federman, S. et al. The paucity of frugivores in Madagascar may not be due to unpredictable temperatures or fruit resources. PLoS ONE 12, e0168943 (2017).

    Article  CAS  Google Scholar 

  36. Dunham, A. E., Razafindratsima, A. E., Rakotonirina, O. H. & Wright, P. C. Fruiting phenology is linked to rainfall variability in a tropical rain forest. Biotropica 50, 396–404 (2018).

    Article  Google Scholar 

  37. Dew, J. L. & Wright, P. Frugivory and seed dispersal by four species of primates in Madagascar’s eastern rain forest. Biotropica 30, 425–437 (1998).

    Article  Google Scholar 

  38. Moses, K. L. & Semple, S. Primary seed dispersal by the black-and-white ruffed lemur (Varecia variegata) in the Manombo forest, south-east Madagascar. J. Trop. Ecol. 27, 529–538 (2011).

    Article  Google Scholar 

  39. Razafindratsima, O. H. & Martinez, B. T. Seed dispersal by red-ruffed lemurs: seed size, viability and beneficial effect on seedling growth. Ecotropica 18, 15–26 (2012).

    Google Scholar 

  40. Martinez, B. T. & Razafindratsima, O. H. Frugivory and seed dispersal patterns of the red-ruffed lemur, Varecia rubra, at a forest restoration site in Masoala National Park, Madagascar. Folia Primatol. 85, 228–243 (2014).

    Article  Google Scholar 

  41. Razafindratsima, O. H., Jones, T. A. & Dunham, A. E. Patterns of movement and seed dispersal by three lemur species. Am. J. Primatol. 76, 84–96 (2014).

    Article  Google Scholar 

  42. Razafindratsima, O. H. & Dunham, A. E. Frugivores bias seed–adult tree associations through nonrandom seed dispersal: a phylogenetic approach. Ecology 97, 2094–2102 (2016).

    Article  Google Scholar 

  43. Razafindratsima, O. H. & Dunham, A. E. Assessing the impacts of nonrandom seed dispersal by multiple frugivore partners on plant recruitment. Ecology 96, 24–30 (2015).

    Article  Google Scholar 

  44. Frey, J. K. Variation in phenology of hibernation and reproduction in the endangered New Mexico meadow jumping mouse (Zapus hudsonius luteus). PeerJ 3, e1138 (2015).

    Article  Google Scholar 

  45. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).

  46. Dawe, K. L. & Boutin, S. Climate change is the primary driver of white-tailed deer (Odocoileus virginianus) range expansion at the northern extent of its range; land use is secondary. Ecol. Evol. 6, 6435–6451 (2016).

    Article  Google Scholar 

  47. Wright, P. C. et al. Frugivory in four sympatric lemurs: implications for the future of Madagascar’s forests. Am. J. Primatol. 73, 585–602 (2011).

    Article  Google Scholar 

  48. Federman, S. et al. Implications of lemuriform extinctions for the Malagasy flora. Proc. Natl Acad. Sci. USA 113, 5041–5046 (2016).

    Article  CAS  Google Scholar 

  49. Vieilledent, G., Grinand, C. & Vaudry, R. Forecasting deforestation and carbon emissions in tropical developing countries facing demographic expansion: a case study in Madagascar. Ecol. Evol. 3, 1702–1716 (2013).

    Article  Google Scholar 

  50. Kull, C. A. et al. The introduced flora of Madagascar. Biol. Invasions 14, 875–888 (2012).

    Article  Google Scholar 

  51. Marsh, L. K. & Chapman, C. Primates in Fragments: Complexity and Resilience (Springer, 2013).

  52. Costanza, J. K. & Terando, A. J. Landscape connectivity planning for adaptation to future climate and land-use change. Curr. Landsc. Ecol. Rep. 4, 1–13 (2019).

    Article  Google Scholar 

  53. Harvey, C. A. et al. Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar. Phil. Trans. R. Soc. Lond. B 369, 20130089 (2014).

    Article  Google Scholar 

  54. Golden, C. D., Gupta, A. C., Vaitla, B. & Myers, S. S. Ecosystem services and food security: assessing inequality at community, household and individual scales. Environ. Conserv. 43, 381–388 (2016).

    Article  Google Scholar 

  55. Molotoks, A. et al. Global hotspots of conflict risk between food security and biodiversity conservation. Land 6, 67 (2017).

    Article  Google Scholar 

  56. Jones, J. Madagascar: fear and violence making rainforest conservation more challenging than ever. The Conversation http://theconversation.com/madagascar-fear-and-violence-making-rainforest-conservation-more-challenging-than-ever-108142 (2018).

  57. Borgerson, C. et al. The use of natural resources to improve household income, health, and nutrition within the forests of Kianjavato, Madagascar. Madagascar Conserv. Dev. 13, 45–52 (2018).

    Article  Google Scholar 

  58. Golden, C. D. et al. Economic valuation of subsistence harvest of wildlife in Madagascar. Conserv. Biol. 28, 234–243 (2014).

    Article  Google Scholar 

  59. Borgerson, C. Optimizing conservation policy: the importance of seasonal variation in hunting and meat consumption on the Masoala Peninsula of Madagascar. Oryx 50, 405–418 (2016).

    Article  Google Scholar 

  60. Farris, Z. J. et al. Hunting, exotic carnivores, and habitat loss: anthropogenic effects on a native carnivore community, Madagascar. PLoS ONE 10, e0136456 (2015).

    Article  CAS  Google Scholar 

  61. Poulsen, J. R., Clark, C. J. & Bolker, B. M. Decoupling the effects of logging and hunting on an Afrotropical animal community. Ecol. Appl. 21, 1819–1836 (2011).

    Article  CAS  Google Scholar 

  62. Qiao, H., Escobar, L. E. & Peterson, A. T. Accessible areas in ecological niche comparisons of invasive species: recognized but still overlooked. Sci. Rep. 7, 1213 (2017).

    Article  CAS  Google Scholar 

  63. Lehikoinen, A. et al. Declining population trends of European mountain birds. Glob. Change Biol. 25, 577–588 (2019).

    Article  Google Scholar 

  64. Thorne, J. H. et al. Alternative biological assumptions strongly influence models of climate change effects on mountain gorillas. Ecosphere 4, 108 (2013).

    Article  Google Scholar 

  65. Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H.-H. & Warren, D. Niche estimation above and below the species level. Trends Ecol. Evol. 34, 260–273 (2019).

    Article  Google Scholar 

  66. Brown, J. L. et al. Spatial biodiversity patterns of Madagascar’s amphibians and reptiles. PLoS ONE 11, e0144076 (2016).

    Article  Google Scholar 

  67. Goodman, S. M. & Benstead, J. P. Updated estimates of biotic diversity and endemism for Madagascar. Oryx 39, 73–77 (2005).

    Article  Google Scholar 

  68. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).

  69. Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 3 (IPCC, WMO, 2018).

  70. Muldoon, K. M. & Goodman, S. M. Primates as predictors of mammal community diversity in the forest ecosystems of Madagascar. PLoS ONE 10, e0136787 (2015).

    Article  CAS  Google Scholar 

  71. Bruner, A. G., Gullison, R. E., Rice, R. E. & da Fonseca, G. A. B. Effectiveness of parks in protecting tropical biodiversity. Science 291, 125–128 (2001).

    Article  CAS  Google Scholar 

  72. Morelli, T. L. et al. Managing climate change refugia for climate adaptation. PLoS ONE 11, e0159909 (2016).

    Article  CAS  Google Scholar 

  73. Tollefson, J. Fate of Madagascar’s forests in the hands of incoming president. Nature 565, 407 (2019).

    Article  CAS  Google Scholar 

  74. Raftery, A. E., Chunn, J. L., Gerland, P. & Sevčíková, H. Bayesian probabilistic projections of life expectancy for all countries. Demography 50, 777–801 (2013).

    Article  Google Scholar 

  75. World Population Prospects 2017 (United Nations, 2017).

  76. Riitters, K., Wickham, J., O’Neill, R., Jones, B. & Smith, E. Global-scale patterns of forest fragmentation. Conserv. Ecol. 4, 3 (2000).

    Article  Google Scholar 

  77. Baden, A. L., Brenneman, R. A. & Louis, E. E. Jr Morphometrics of wild black-and-white ruffed lemurs (Varecia variegata; Kerr, 1792). Am. J. Primatol. 70, 913–926 (2008).

    Article  Google Scholar 

  78. Balko, E. A. A Behaviorally Plastic Response to Forest Composition and Logging Disturbance by Varecia variegata variegata in Ranomafana National Park, Madagascar (State Univ. New York, 1998).

  79. Vasey, N. & Tattersal, I. Do ruffed lemurs form a hybrid zone? Distribution and discovery of Varecia, with systematic and conservation implications. Am. Museum Novit. 26, 1–26 (2002).

    Google Scholar 

  80. Irwin, M. T., Johnson, S. E. & Wright, P. C. The state of lemur conservation in south-eastern Madagascar: population and habitat assessments for diurnal and cathemeral lemurs using surveys, satellite imagery and GIS. Oryx 39, 204–218 (2005).

    Article  Google Scholar 

  81. Mittermeier, R. A. et al. Lemurs of Madagascar (Conservation International, 2010).

  82. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  83. Buckland, S. T. et al. Advanced Distance Sampling Vol. 2 (Oxford Univ. Press, 2004).

  84. Buckland, S. T. et al. Introduction to Distance Sampling: Estimating Abundance of Biological Populations (Oxford Univ. Press, 2001).

  85. Sterling, E. & Ramaroson, M. G. Rapid assessment of the primate fauna of the eastern slopes of the Réserve Naturelle Intégrale d’Andringitra, Madagascar. Field. Zool. 85, 293–305 (1996).

    Google Scholar 

  86. Williams, B., Nichols, J. D. & Conroy, M. J. Analysis and Management of Animal Populations (Academic, 2002).

  87. Borchers, D. L. & Marques, T. A. From distance sampling to spatial capture–recapture. Adv. Stat. Anal. 101, 475–494 (2017).

    Article  Google Scholar 

  88. Altmann, J. Observational study of behavior: sampling methods. Behaviour 49, 227–267 (1974).

    Article  CAS  Google Scholar 

  89. Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article  Google Scholar 

  90. Anderson, R. P. & Raza, A. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J. Biogeogr. 37, 1378–1393 (2010).

    Article  Google Scholar 

  91. Guevara, L., Gerstner, B. E., Kass, J. M. & Anderson, R. P. Toward ecologically realistic predictions of species distributions: a cross-time example from tropical montane cloud forests. Glob. Change Biol. 24, 1511–1522 (2018).

    Article  Google Scholar 

  92. Stolar, J. & Nielsen, S. E. Accounting for spatially biased sampling effort in presence-only species distribution modelling. Divers. Distrib. 21, 595–608 (2015).

    Article  Google Scholar 

  93. Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275, 73–77 (2014).

    Article  Google Scholar 

  94. Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).

    Article  Google Scholar 

  95. Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).

    Article  Google Scholar 

  96. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  97. Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).

    Article  Google Scholar 

  98. Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).

    Article  Google Scholar 

  99. Nunes, L. A. & Pearson, R. G. A null biogeographical test for assessing ecological niche evolution. J. Biogeogr. 44, 1331–1343 (2017).

    Article  Google Scholar 

  100. Smith, A. B. enmSdm: tools for modeling niches and distributions of species. R package version 0.3.1.0. (2018).

  101. Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: species distribution modeling. R package version 1.1-4. (2017).

  102. Hijmans, R. J. raster: geographic data analysis and modeling. R package version 3.0-7. (2017).

  103. Hijmans, R. J. geosphere: spherical trigonometry. R package version 1.5-10. (2017).

  104. Bivand, R. & Rundel, C. rgeos: interface to geometry engine - open source (‘GEOS’). R package version 0.5-1. (2017).

  105. R Core Team R: A Language and Environment for Statistical Computing (R Foundation, 2013).

  106. Smith, A. B. fasterRaster: faster raster processing in R using GRASS GIS. R package version 0.4.1. (2018).

  107. Neteler, M., Bowman, M. H., Landa, M. & Metz, M. GRASS GIS: a multi-purpose open source GIS 2012. Environ. Model. Softw. 31, 124–130 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Ministry of the Environment and Sustainable Development of the Government of Madagascar for issuing the numerous research permits to undertake the field surveys underpinning this study and for sharing protected area data. We also thank the University of Antananarivo, MICET/CVB/ICTE and GERP for facilitating the application process for several of these permits and for logistical support. We thank the many conservationists, researchers and research assistants from around Madagascar, without whom data collection would have been impossible, and we are grateful to the following for funding: Alan Graham Fund in Global Change; Animal Behavior Society; American Society of Primatology; The Aspinall Foundation; Beauval Nature; CERZA Conservation; Cleveland Metroparks Zoo; Douroucouli Foundation; Edna Bailey Susan Fund; European Association for Zoos and Aquariums; The Explorers Club; Hunter College of the City University of New York; Idea Wild; International Foundation for Science; IUCN ‘SOS - Save Our Species’; J. William Fulbright Foundation; Mohamed bin Zayed Species Conservation Fund; National Geographic Society Conservation Trust (C280–14, C021–17), Waitts grant (no. W96-10); National Science Foundation DDIG (BSC-0725975), SBE-IBSS PRF (1513638); The Natural Sciences and Engineering Research Council of Canada; Peoples Trust for Endangered Species; Primate Action Fund; Primate Conservation, Inc.; Primate Society of Great Britain; PSC-CUNY; The Rufford Foundation; Saint Louis Zoo’s WildCare Institute; Schlumberger Foundation; Sophie Danforth Conservation Fund; Stony Brook University; Wilford A. Dence Memorial Fellowship for Wildlife Science. The findings and conclusions in this article are those of the author(s) and do not necessarily represent the views of the U.S. Fish and Wildlife Service.

Author information

Authors and Affiliations

Authors

Contributions

T.L.M. conceived the idea, designed and developed the project, acquired, analysed and interpreted data and wrote the paper. A.B.S. adapted the deforestation model, constructed the niche model and wrote the paper. A.N.M., E.A.B., C.B., R.D., S.F., Z.F., C.D.G., S.M.H., M.I., R.L.J., S.J., T.K., S.M.L., E.E.L.Jr, A.M., H.N.T.R., H.L.L.R., J.R. and O.H.R. designed and developed the project, acquired and interpreted data and contributed to the manuscript text. A.L.B. conceived the idea, designed and developed the project, acquired and interpreted data and wrote the paper.

Corresponding author

Correspondence to Andrea L. Baden.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, results, Tables 1, 2 and 4 and Figs. 1–7.

Reporting Summary

Supplementary Table 3

Change in suitability by protected area.

Supplementary Table 5

Mean predicted suitability by scenario and elevational band.

Supplementary Table 6

Sampling for Varecia.

Supplementary Video 1

Animation illustrating forest loss between 2015 and 2080 under relaxed (left) and strict (right) forest protection scenarios.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morelli, T.L., Smith, A.B., Mancini, A.N. et al. The fate of Madagascar’s rainforest habitat. Nat. Clim. Chang. 10, 89–96 (2020). https://doi.org/10.1038/s41558-019-0647-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-019-0647-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing