The potential to reduce uncertainty in regional runoff projections from climate models

Abstract

Increasingly, climate change impact assessments rely directly on climate models. Assessments of future water security depend in part on how the land model components in climate models partition precipitation into evapotranspiration and runoff, and on the sensitivity of this partitioning to climate. Runoff sensitivities are not well constrained, with CMIP5 models displaying a large spread for the present day, which projects onto change under warming, creating uncertainty. Here we show that constraining CMIP5 model runoff sensitivities with observed estimates could reduce uncertainty in runoff projection over the western United States by up to 50%. We urge caution in the direct use of climate model runoff for applications and encourage model development to use regional-scale hydrological sensitivity metrics to improve projections for water security assessments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Projected changes in temperature, precipitation, runoff and runoff efficiency.
Fig. 2: Absolute and relative bias in precipitation and runoff in Earth system models.
Fig. 3: Runoff sensitivities.
Fig. 4: Runoff projections and their relationship to runoff sensitivities.

Data availability

All data used in this study are publicly available. The CMIP5 simulations are available through PCMDI, the CESM simulations are available on earthsystemgrid.org, and the observational data are available through the respective institutions. Post-processed data can be obtained from the corresponding author.

Code availability

Code to produce the figures is available from the corresponding author.

References

  1. 1.

    Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. E. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013).

  2. 2.

    Milly, P. C. D., Dunne, K. A. & Vecchia, A. V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438, 347–350 (2005).

    CAS  Google Scholar 

  3. 3.

    Wood, A. W., Lettenmaier, D. P. & Palmer, R. N. Assessing climate change implications for water resources planning. Clim. Change 37, 203–228 (1997).

    Google Scholar 

  4. 4.

    Christensen, N. S., Wood, A. W., Voisin, N., Lettenmaier, D. P. & Palmer, R. N. The effects of climate change on the hydrology and water resources of the Colorado River basin. Clim. Change 62, 337–363 (2004).

    Google Scholar 

  5. 5.

    Barnett, T. P. et al. Human-induced changes in the hydrology of the Western United States. Science 319, 1080–1083 (2008).

    CAS  Google Scholar 

  6. 6.

    Mankin, J. S. & Diffenbaugh, N. S. Influence of temperature and precipitation variability on near-term snow trends. Clim. Dyn. 45, 1099–1116 (2015).

    Google Scholar 

  7. 7.

    Nijssen, B., O’Donnell, G. M., Hamlet, A. F. & Lettenmaier, D. P. Hydrologic sensitivity of global rivers to climate change. Clim. Change 50, 143–175 (2001).

    CAS  Google Scholar 

  8. 8.

    Lehner, F. et al. Projected drought risk in 1.5 °C and 2 °C warmer climates. Geophys. Res. Lett. 44, 7419–7428 (2017).

    Google Scholar 

  9. 9.

    Mankin, J. S., Smerdon, J. E., Cook, B. I., Williams, A. P. & Seager, R. The curious case of projected twenty-first-century drying but greening in the American West. J. Clim. 30, 8689–8710 (2017).

    Google Scholar 

  10. 10.

    Lehner, F. et al. Mitigating the impacts of climate nonstationarity on seasonal streamflow predictability in the U.S. Southwest. Geophys. Res. Lett. 44, 12208–12217 (2017).

    Google Scholar 

  11. 11.

    Woodhouse, C. A. & Pederson, G. T. Investigating runoff efficiency in Upper Colorado River streamflow over past centuries. Water Resour. Res. 54, 286–300 (2018).

    Google Scholar 

  12. 12.

    Knutti, R. & Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Change 3, 1–5 (2012).

    Google Scholar 

  13. 13.

    Pitman, A. J. The evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Climatol. 23, 479–510 (2003).

    Google Scholar 

  14. 14.

    Lawrence, D. M. et al. Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. J. Adv. Model. Earth Syst. 3, M03001 (2011).

    Google Scholar 

  15. 15.

    Clark, M. P. et al. Improving the representation of hydrologic processes in Earth system models. Water Resour. Res. 51, 5929–5956 (2015).

    Google Scholar 

  16. 16.

    Clark, M. P. et al. Characterizing uncertainty of the hydrologic impacts of climate change. Curr. Clim. Change Rep. 2, 55–64 (2016).

    Google Scholar 

  17. 17.

    Seager, R. et al. Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316, 1181–1184 (2007).

    CAS  Google Scholar 

  18. 18.

    Seager, R. et al. Projections of declining surface-water availability for the southwestern United States. Nat. Clim. Change 3, 482–486 (2013). Example of an impact assessment based on results from Earth system models expressed in relative space; partly motivated this Perspective.

    Google Scholar 

  19. 19.

    Zhang, X., Tang, Q., Zhang, X. & Lettenmaier, D. P. Runoff sensitivity to global mean temperature change in the CMIP5 models. Geophys. Res. Lett. 41, 5492–5498 (2014).

    Google Scholar 

  20. 20.

    van der Wiel, K. et al. 100-year Lower Mississippi floods in a global climate model: characteristics and future changes. J. Hydrometeorol. 19, 1547–1563 (2018).

    Google Scholar 

  21. 21.

    Mankin, J. S., Viviroli, D., Mekonnen, M., Hoekstra, A. Y. & Horton, R. M. Influence of internal variability on population exposure to hydroclimatic changes. Environ. Res. Lett. 12, 044007 (2017).

    Google Scholar 

  22. 22.

    Kam, J., Knutson, T. R. & Milly, P. C. D. Climate model assessment of changes in winter–spring streamflow timing over North America. J. Clim. 31, 5581–5593 (2018).

    Google Scholar 

  23. 23.

    Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).

    CAS  Google Scholar 

  24. 24.

    Wood, A. W., Leung, L. R., Sridhar, V. & Lettenmaier, D. P. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim. Change 62, 189–216 (2004).

    Google Scholar 

  25. 25.

    Pierce, D. W., Cayan, D. R. & Thrasher, B. L. Statistical downscaling using localized constructed analogs (LOCA). J. Hydrometeorol. 15, 2558–2585 (2014).

    Google Scholar 

  26. 26.

    Hall, A. Projecting regional change. Science 346, 1461–1462 (2014).

    CAS  Google Scholar 

  27. 27.

    Schaake, J. C. in Climate Change and US Water Resources (ed. Waggoner, P. E.) 177–206 (Wiley, 1990). Classic illustration of the relationship between climate and runoff sensitivity.

  28. 28.

    Tang, Q. & Lettenmaier, D. P. 21st century runoff sensitivities of major global river basins. Geophys. Res. Lett. 39, 1–5 (2012).

    CAS  Google Scholar 

  29. 29.

    Mitchell, K. E. et al. The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res. 109, D07S90 (2004).

    Google Scholar 

  30. 30.

    Xia, Y. et al. Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res. Atmos. 117, https://doi.org/10.1029/2011JD016051 (2012).

    Google Scholar 

  31. 31.

    Laguë, M. M., Bonan, G. B. & Swann, A. L. S. Separating the impact of individual land surface properties on the terrestrial surface energy budget in both the coupled and un-coupled land–atmosphere system. J. Clim. https://doi.org/10.1175/JCLI-D-18-0812.1 (2019).

    Article  Google Scholar 

  32. 32.

    Clark, M. P. et al. The evolution of process-based hydrologic models: Historical challenges and the collective quest for physical realism. Hydrol. Earth Syst. Sci. 21, 3427–3440 (2017).

    Google Scholar 

  33. 33.

    Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9, 269–278 (2019). Formulated a framework to assess the robustness of emergent constraints; partly guided the assessment of the observational constraints in this Perspective.

    Google Scholar 

  34. 34.

    Musselman, K. N. et al. Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Clim. Change 8, 808–812 (2018).

    Google Scholar 

  35. 35.

    Andreassian, V., Coron, L., Lerat, J. & Le Moine, N. Climate elasticity of streamflow revisited — an elasticity index based on long-term hydrometeorological records. Hydrol. Earth Syst. Sci. 20, 4503–4524 (2016). Detailed investigation of the challenge to constrain runoff sensitivities from observations.

    Google Scholar 

  36. 36.

    Milly, P. C. D., Kam, J. & Dunne, K. A. On the sensitivity of annual streamflow to air temperature. Water Resour. Res. https://doi.org/10.1002/2017WR021970 (2018). Energetics perspective on runoff sensitivities, illustrates limitations of regression-based approaches.

    Article  Google Scholar 

  37. 37.

    Vano, J. A., Das, T. & Lettenmaier, D. P. Hydrologic sensitivities of Colorado River runoff to changes in precipitation and temperature. J. Hydrometeorol. 13, 932–949 (2012).

    Google Scholar 

  38. 38.

    Vano, J. A. et al. Understanding uncertainties in future Colorado River streamflow. Bull. Am. Meteorol. Soc. 95, 59–78 (2014).

    Google Scholar 

  39. 39.

    Hoerling, M. et al. Causes for the century-long decline in Colorado River flow. J. Clim. https://doi.org/10.1175/jcli-d-19-0207.1 (2019).

    Article  Google Scholar 

  40. 40.

    Barsugli, J. J., Hoerling, M. P. & Livneh, B. Is the recent drought on the Colorado River the new normal? EOS 100, https://doi.org/10.1029/2019EO117173 (2019).

  41. 41.

    Woodhouse, C. A., Pederson, G. T., Morino, K., McAfee, S. A. & McCabe, G. J. Increasing influence of air temperature on upper Colorado River streamflow. Geophys. Res. Lett. 43, 2174–2181 (2016).

    Google Scholar 

  42. 42.

    Vano, J. A. & Lettenmaier, D. P. A sensitivity-based approach to evaluating future changes in Colorado River discharge. Clim. Change 122, 621–634 (2014).

    Google Scholar 

  43. 43.

    Vano, J. A., Nijssen, B. & Lettenmaier, D. P. Seasonal hydrologic responses to climate change in the Pacific Northwest. Water Resour. Res. 51, 1959–1976 (2015).

    Google Scholar 

  44. 44.

    Betts, R. A. et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448, 1037–1041 (2007).

    CAS  Google Scholar 

  45. 45.

    Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. https://doi.org/10.1002/2015WR017031 (2015).

    Article  Google Scholar 

  46. 46.

    Swann, A. A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).

    CAS  Google Scholar 

  47. 47.

    Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).

    Google Scholar 

  48. 48.

    Mankin, J. S. et al. Blue water tradeoffs with vegetation in a CO2-enriched climate. Geophys. Res. Lett. https://doi.org/10.1002/2018GL077051 (2018).

    Article  Google Scholar 

  49. 49.

    Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).

    Google Scholar 

  50. 50.

    Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).

    CAS  Google Scholar 

  51. 51.

    De Kauwe, M. G. et al. Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites. Glob. Change Biol. 19, 1759–1779 (2013).

    Google Scholar 

  52. 52.

    Roderick, M. L. & Farquhar, G. D. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res. 47, 1–11 (2011).

    Google Scholar 

  53. 53.

    Das, T., Pierce, D. W., Cayan, D. R., Vano, J. A. & Lettenmaier, D. P. The importance of warm season warming to western U.S. streamflow changes. Geophys. Res. Lett. 38, https://doi.org/10.1029/2011GL049660 (2011).

    Google Scholar 

  54. 54.

    Xiao, M., Udall, B. & Lettenmaier, D. P. On the causes of declining Colorado River streamflows. Water Resour. Res. 2, 6739–6756 (2018).

    Google Scholar 

  55. 55.

    Hoerling, M., Lettenmaier, D., Cayan, D. & Udall, B. Reconciling projections of Colorado River streamflow. Southwest Hydrol. 20–22 (May/June 2009).

  56. 56.

    Inbar, M., Tamir, M. & Wittenberg, L. Runoff and erosion processes after a forest fire in Mount Carmel, a Mediterranean area. Geomorphology. https://doi.org/10.1016/S0169-555X(97)00098-6 (1998).

    Article  Google Scholar 

  57. 57.

    Edburg, S. L. et al. Cascading impacts of bark beetle-caused tree mortality on coupled biogeophysical and biogeochemical processes. Front. Ecol. Environ. 10, 416–424 (2012).

    Google Scholar 

  58. 58.

    Lehner, F., Wahl, E. R., Wood, A. W., Blatchford, D. B. & Llewellyn, D. Assessing recent declines in Upper Rio Grande runoff efficiency from a paleoclimate perspective. Geophys. Res. Lett. 44, 4124–4133 (2017).

    Google Scholar 

  59. 59.

    Best, M. J. et al. The plumbing of land surface models: benchmarking model performance. J. Hydrometeorol. 16, 1425–1442 (2015).

    Google Scholar 

  60. 60.

    Padrón, R. S., Gudmundsson, L. & Seneviratne, S. I. Observational constraints reduce likelihood of extreme changes in multidecadal land water availability. Geophys. Res. Lett. https://doi.org/10.1029/2018GL080521 (2019). Example of an observational constraint on model projections of precipitation minus evapotranspiration.

    Article  Google Scholar 

  61. 61.

    Yang, H. et al. Regional patterns of future runoff changes from Earth system models constrained by observation. Geophys. Res. Lett. 44, 5540–5549 (2017).

    Google Scholar 

  62. 62.

    Knutti, R., Masson, D. & Gettelman, A. Climate model genealogy: generation CMIP5 and how we got there. Geophys. Res. Lett. 40, 1194–1199 (2013).

    Google Scholar 

  63. 63.

    Knutti, R., Baumberger, C. & Hirsch Hadorn, G. in Computer Simulation Validation (eds. Beisbart, C. & Saam, N.) 835–855 (Springer, 2019).

  64. 64.

    Vano, J. A. et al. DOs and DON’Ts for using climate change information for water resource planning and management: guidelines for study design. Clim. Serv. 12, 1–13 (2018).

    Google Scholar 

  65. 65.

    Hoffman, F. M. et al. International Land Model Benchmarking (ILAMB) 2016 Workshop Report. Technical Report DOE/SC-0186 (2016).

  66. 66.

    Collier, N. et al. The International Land Model Benchmarking (ILAMB) system: design, theory, and implementation. J. Adv. Model. Earth Syst. 10, 2731–2754 (2018).

    Google Scholar 

  67. 67.

    Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Change 9, 102–110 (2019).

    Google Scholar 

  68. 68.

    Koster, R. D. & P. Mahanama, S. P. Land surface controls on hydroclimatic means and variability. J. Hydrometeorol. 13, 1604–1620 (2012).

    Google Scholar 

  69. 69.

    Koster, R. ‘Efficiency space’: a framework for evaluating joint evaporation and runoff behavior. Bull. Am. Meteorol. Soc. 96, 393–396 (2015).

    Google Scholar 

  70. 70.

    Hall, A. & Qu, X. Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett. 33, 1–4 (2006).

    Google Scholar 

  71. 71.

    Thackeray, C. W., Qu, X. & Hall, A. Why do models produce spread in snow albedo feedback? Geophys. Res. Lett. 45, 6223–6231 (2018).

    Google Scholar 

  72. 72.

    Levine, P. A., Randerson, J. T., Swenson, S. C. & Lawrence, D. M. Evaluating the strength of the land–atmosphere moisture feedback in Earth system models using satellite observations. Hydrol. Earth Syst. Sci. 20, 4837–4856 (2016).

    Google Scholar 

  73. 73.

    Nearing, G. S., Ruddell, B. L., Clark, M. P., Nijssen, B. & Peters-Lidard, C. Benchmarking and process diagnostics of land models. J. Hydrometeorol. 19, 1835–1852 (2018).

    Google Scholar 

  74. 74.

    Livneh, B. et al. A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950–2013. Sci. Data 2, 150042 (2015).

    Google Scholar 

  75. 75.

    Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P. & Nijssen, B. A Long-term hydrologically-based data set of land surface fluxes and states for the conterminous United States. J. Clim. 15, 3237–3251 (2002).

    Google Scholar 

  76. 76.

    Milly, P. C. D. & Dunne, K. A. Macroscale water fluxes 2. Water and energy supply control of their interannual variability. Water Resour. Res. 38, 24-1–24-9 (2002).

    Google Scholar 

  77. 77.

    Rosenberg, E. A., Clark, E. A., Steinemann, A. C. & Lettenmaier, D. P. On the contribution of groundwater storage to interannual streamflow anomalies in the Colorado River basin. Hydrol. Earth Syst. Sci. 17, 1475–1491 (2013).

    Google Scholar 

  78. 78.

    Kay, J. E. et al. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    Google Scholar 

  79. 79.

    Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).

    Google Scholar 

  80. 80.

    Vogel, R. M., Wilson, I. & Daly, C. Regional regression models of annual streamflow for the United States. J. Irrig. Drain. Eng. 125, 148–157 (1999).

    Google Scholar 

  81. 81.

    Risbey, J. S. & Entekhabi, D. Observed Sacramento basin streamflow response to precipitation and temperature changes and its relevance to climate impact studies. J. Hydrol. 184, 209–223 (1996).

    CAS  Google Scholar 

  82. 82.

    Fu, G., Charles, S. P. & Chiew, F. H. S. A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow. Water Resour. Res. 43, 1–12 (2007).

    Google Scholar 

  83. 83.

    Sankarasubramanian, A., Vogel, R. M. & Limbrunner, J. F. Climate elasticity of stream flow in the United States. Water Resour. Res. 37, 1771–1781 (2001).

    Google Scholar 

  84. 84.

    Nowak, K., Hoerling, M., Rajagopalan, B. & Zagona, E. Colorado River basin hydroclimatic variability. J. Clim. 25, 4389–4403 (2012).

    Google Scholar 

  85. 85.

    Harding, B. L., Wood, A. W. & Prairie, J. R. The implications of climate change scenario selection for future streamflow projection in the Upper Colorado River basin. Hydrol. Earth Syst. Sci. 16, 3989–4007 (2012).

    Google Scholar 

Download references

Acknowledgements

We thank A. Pendergrass, S. Swenson, E. Wahl, C. Milly, L. Gudmundsson, S. Seneviratne, M. Hoerling, J. Barsugli and N. Addor for discussions, and A. Swann for discussion and for providing the C4MIP simulations. This work benefited from discussions at a 2018 workshop on Colorado River climate sensitivity held at NOAA in Boulder, USA. We acknowledge the efforts of all those who contributed to producing the simulations and observational datasets. The National Center for Atmospheric Research is sponsored by the US National Science Foundation (NSF). F.L. is supported by NSF AGS-0856145, Amendment 87, by the Bureau of Reclamation under Cooperative Agreement R16AC00039, and the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the US Department of Energy’s Office of Biological & Environmental Research (BER) via NSF IA 1947282. A.W. is supported by the Bureau of Reclamation (CA R16AC00039), by the US Army Corps of Engineers (CSA 1254557). A.W. and J.A.W. are supported by the NASA Advanced Information Systems Technology program (award ID 80NSSC17K0541). D.M.L is partially supported by NSF INSPIRE grant (NSF-EAR-1528298) and by the RUBISCO Scientific Focus Area (SFA), which is sponsored by the Regional and Global Climate Modeling (RGCM) Program in the Climate and Environmental Sciences Division of the Office of Biological and Environmental Research in the US Department of Energy Office of Science. J.A.V. is supported by grant 80NSSC17K0541 from the NASA AIST program.

Author information

Affiliations

Authors

Contributions

F.L. and A.W.W. conceived the study. F.L. conducted all analyses, constructed the figures and led the writing. All authors contributed to the interpretation of the results and the writing of the manuscript.

Corresponding author

Correspondence to Flavio Lehner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Qiuhong Tang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Supplementary Figs 1–4, Supplementary Sections 1, 2, Supplementary references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lehner, F., Wood, A.W., Vano, J.A. et al. The potential to reduce uncertainty in regional runoff projections from climate models. Nat. Clim. Chang. 9, 926–933 (2019). https://doi.org/10.1038/s41558-019-0639-x

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing