Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100


Land-use change disturbs the function of peatland as a natural carbon sink and triggers high GHG emissions1. Nevertheless, historical trends and future trajectories of GHG budgets from soil do not explicitly include peatlands2,3. Here, we provide an estimate of the past and future role of global peatlands as either a source or sink of GHGs based on scenario timelines of land conversion. Between 1850 and 2015, temperate and boreal regions lost 26.7 million ha, and tropical regions 24.7 million ha, of natural peatland. By 2100, peatland conversion in tropical regions might increase to 36.3 million ha. Cumulative emissions from drained sites reached 80 ± 20 PgCO2e in 2015 and will add up to 249 ± 38 Pg by 2100. At the same time, the number of intact sites accumulating peat will decline. In 1960 the global peatland biome turned from a net sink into a net source of soil-derived GHGs. Annual back-conversion of most of the drained area would render peatlands GHG neutral, whereas emissions from peatland may comprise 12–41% of the GHG emission budget for keeping global warming below +1.5 to +2 °C without rehabilitation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Annual GHG fluxes from biological peat oxidation and peat formation from drained and intact organic soils 1850–2100 without and including peatland rehabilitation.
Fig. 2: Percentage of global CO2 budget required to maintain air temperature <1.5–2.0 °C consumed by drained peatlands 2020–2100 for a budget range of 400–1,600 PgCO2e.

Similar content being viewed by others

Data availability

All figure source data files are available at

Code availability

The numerical codes for the Monte Carlo simulations that support the findings of this study are available from the corresponding author on reasonable request.


  1. Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (2018).

    Article  CAS  Google Scholar 

  2. Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

  3. Walsh, B. et al. Pathways for balancing CO2 emissions and sinks. Nat. Commun. 8, 14856 (2017).

    Article  CAS  Google Scholar 

  4. Rogelj, J. et al. in Global Warming of 1.5° C: An IPCC Special Report (eds Masson-Delmotte, V. et al.) Ch. 2 (IPCC, 2018).

  5. Smith, P. et al. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B 363, 789–813 (2008).

    Article  CAS  Google Scholar 

  6. Frolking, S. & Roulet, N. T. Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Glob. Change Biol. 13, 1079–1088 (2007).

    Article  Google Scholar 

  7. Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Change 8, 907–913 (2018).

    Article  CAS  Google Scholar 

  8. Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).

    Article  CAS  Google Scholar 

  9. Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

  10. Erkens, G., van der Meulen, M. J. & Middelkoop, H. Double trouble: subsidence and CO2 respiration due to 1000 years of Dutch coastal peatlands cultivation. Hydrogeol. J. 24, 551–568 (2016).

    Article  CAS  Google Scholar 

  11. Davidson, N. C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 65, 934–941 (2014).

    Article  Google Scholar 

  12. Murdiyarso, D., Hergoualc’h, K. & Verchot, L. V. Opportunities for reducing greenhouse gas emissions in tropical peatlands. Proc. Natl Acad. Sci. USA 107, 19655–19660 (2010).

    Article  CAS  Google Scholar 

  13. Jukka, M., Aljosja, H., Ronald, V., Soo Chin, L. & Susan, E. P. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environ. Res. Lett. 12, 024014 (2017).

    Article  Google Scholar 

  14. Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011).

    Article  Google Scholar 

  15. Wilson, D. et al. Greenhouse gas emission factors associated with rewetting of organic soils. Mires Peat 17, 28 (2016).

  16. Rein, G., Cleaver, N., Ashton, C., Pironi, P. & Torero, J. L. The severity of smouldering peat fires and damage to the forest soil. Catena 74, 304–309 (2008).

    Article  Google Scholar 

  17. Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015).

    Article  CAS  Google Scholar 

  18. Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2013).

  19. Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).

    Article  CAS  Google Scholar 

  20. Rogelj, J. et al. Differences between carbon budget estimates unravelled. Nat. Clim. Change 6, 245–252 (2016).

    Article  Google Scholar 

  21. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).

  22. Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182–183 (2016).

    Article  CAS  Google Scholar 

  23. Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).

    Article  CAS  Google Scholar 

  24. Ewing, J. & Vepraskas, M. Estimating primary and secondary subsidence in an organic soil 15, 20, and 30 years after drainage. Wetlands 26, 119–130 (2006).

    Article  Google Scholar 

  25. Zerbe, S. et al. Ecosystem service restoration after 10 years of rewetting peatlands in NE Germany. Environ. Manag. 51, 1194–1209 (2013).

    Article  Google Scholar 

  26. Tanneberger, F. & Wichtmann, W. Carbon Credits from Peatland Rewetting: Climate–Biodiversity–Land Use (Schweizerbart Science Publishers, 2011).

  27. Salomaa, A., Paloniemi, R. & Ekroos, A. The case of conflicting Finnish peatland management—skewed representation of nature, participation and policy instruments. J. Environ. Manag. 223, 694–702 (2018).

    Article  Google Scholar 

  28. Hohner, S. M. & Dreschel, T. W. Everglades peats: using historical and recent data to estimate predrainage and current volumes, masses and carbon contents. Mires Peat 16, 1 (2015).

    Google Scholar 

  29. Hansson, A. & Dargusch, P. An estimate of the financial cost of peatland restoration in Indonesia. Case Stud. Environ. 2, (2017).

    Article  Google Scholar 

  30. Hooijer, A. et al. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7, 1505–1514 (2010).

    Article  CAS  Google Scholar 

  31. Joosten, H. The Global Peatland CO 2 Picture. Peatland Status and Drainage Related Emissions in All Countries of the World (Wetlands International, 2010).

  32. Tubiello, F., Biancalani, R., Salvatore, M., Rossi, S. & Conchedda, G. A worldwide assessment of greenhouse gas emissions from drained organic soils. Sustainability 8, 371 (2016).

    Article  Google Scholar 

  33. Leifeld, J. et al. Pyrogenic carbon contributes substantially to carbon storage in intact and degraded Northern Peatlands. Land Degrad. Dev. 29, 2082–2091 (2018).

    Article  Google Scholar 

  34. Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24, 1028–1042 (2014).

    Article  Google Scholar 

  35. Yu, Z. C., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the last glacial maximum. Geophys. Res. Lett. 37, L13402 (2010).

    Google Scholar 

  36. Hapsari, K. A. et al. Environmental dynamics and carbon accumulation rate of a tropical peatland in Central Sumatra, Indonesia. Quat. Sci. Rev. 169, 173–187 (2017).

    Article  Google Scholar 

  37. Rossi, S. et al. FAOSTAT estimates of greenhouse gas emissions from biomass and peat fires. Climatic Change 135, 699–711 (2016).

    Article  CAS  Google Scholar 

  38. Mickler, R. A., Welch, D. P. & Bailey, A. D. Carbon emissions during wildland fire on a North American temperate peatland. Fire Ecol. 13, 34–57 (2017).

    Article  Google Scholar 

  39. Guo, M. et al. CO2 emissions from the 2010 Russian wildfires using GOSAT data. Environ. Pollut. 226, 60–68 (2017).

    Article  CAS  Google Scholar 

  40. Joosten, H. & Clarke, D. Wise Use of Mires and Peatlands—Background and Principles Including a Framework for Decision-making (International Mire Conservation Group & International Peat Society, 2002).

  41. Mineral Commodity Summaries 1997–2018 (USGS, accessed 31 January 2019);

  42. Tcvetkov, P. S. The history, present status and future prospects of the Russian fuel peat industry. Mires Peat 19, 11–12 (2017).

  43. Gibson, C. M. et al. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 9, 3041 (2018).

Download references

Author information

Authors and Affiliations



J.L. designed the study and prepared the manuscript with contributions from C.W.-G. and S.P.

Corresponding author

Correspondence to Jens Leifeld.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Kuno Kasak and Debjani Sihi for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leifeld, J., Wüst-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Chang. 9, 945–947 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology