Abstract
Land-use change disturbs the function of peatland as a natural carbon sink and triggers high GHG emissions1. Nevertheless, historical trends and future trajectories of GHG budgets from soil do not explicitly include peatlands2,3. Here, we provide an estimate of the past and future role of global peatlands as either a source or sink of GHGs based on scenario timelines of land conversion. Between 1850 and 2015, temperate and boreal regions lost 26.7 million ha, and tropical regions 24.7 million ha, of natural peatland. By 2100, peatland conversion in tropical regions might increase to 36.3 million ha. Cumulative emissions from drained sites reached 80 ± 20 PgCO2e in 2015 and will add up to 249 ± 38 Pg by 2100. At the same time, the number of intact sites accumulating peat will decline. In 1960 the global peatland biome turned from a net sink into a net source of soil-derived GHGs. Annual back-conversion of most of the drained area would render peatlands GHG neutral, whereas emissions from peatland may comprise 12–41% of the GHG emission budget for keeping global warming below +1.5 to +2 °C without rehabilitation.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
Data availability
All figure source data files are available at https://issues.pangaea.de/browse/PDI-21686.
Code availability
The numerical codes for the Monte Carlo simulations that support the findings of this study are available from the corresponding author on reasonable request.
References
Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (2018).
Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).
Walsh, B. et al. Pathways for balancing CO2 emissions and sinks. Nat. Commun. 8, 14856 (2017).
Rogelj, J. et al. in Global Warming of 1.5° C: An IPCC Special Report (eds Masson-Delmotte, V. et al.) Ch. 2 (IPCC, 2018).
Smith, P. et al. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B 363, 789–813 (2008).
Frolking, S. & Roulet, N. T. Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Glob. Change Biol. 13, 1079–1088 (2007).
Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Change 8, 907–913 (2018).
Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).
Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
Erkens, G., van der Meulen, M. J. & Middelkoop, H. Double trouble: subsidence and CO2 respiration due to 1000 years of Dutch coastal peatlands cultivation. Hydrogeol. J. 24, 551–568 (2016).
Davidson, N. C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 65, 934–941 (2014).
Murdiyarso, D., Hergoualc’h, K. & Verchot, L. V. Opportunities for reducing greenhouse gas emissions in tropical peatlands. Proc. Natl Acad. Sci. USA 107, 19655–19660 (2010).
Jukka, M., Aljosja, H., Ronald, V., Soo Chin, L. & Susan, E. P. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environ. Res. Lett. 12, 024014 (2017).
Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011).
Wilson, D. et al. Greenhouse gas emission factors associated with rewetting of organic soils. Mires Peat 17, 28 (2016).
Rein, G., Cleaver, N., Ashton, C., Pironi, P. & Torero, J. L. The severity of smouldering peat fires and damage to the forest soil. Catena 74, 304–309 (2008).
Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015).
Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2013).
Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).
Rogelj, J. et al. Differences between carbon budget estimates unravelled. Nat. Clim. Change 6, 245–252 (2016).
IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).
Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182–183 (2016).
Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).
Ewing, J. & Vepraskas, M. Estimating primary and secondary subsidence in an organic soil 15, 20, and 30 years after drainage. Wetlands 26, 119–130 (2006).
Zerbe, S. et al. Ecosystem service restoration after 10 years of rewetting peatlands in NE Germany. Environ. Manag. 51, 1194–1209 (2013).
Tanneberger, F. & Wichtmann, W. Carbon Credits from Peatland Rewetting: Climate–Biodiversity–Land Use (Schweizerbart Science Publishers, 2011).
Salomaa, A., Paloniemi, R. & Ekroos, A. The case of conflicting Finnish peatland management—skewed representation of nature, participation and policy instruments. J. Environ. Manag. 223, 694–702 (2018).
Hohner, S. M. & Dreschel, T. W. Everglades peats: using historical and recent data to estimate predrainage and current volumes, masses and carbon contents. Mires Peat 16, 1 (2015).
Hansson, A. & Dargusch, P. An estimate of the financial cost of peatland restoration in Indonesia. Case Stud. Environ. 2, https://doi.org/10.1525/cse.2017.000695 (2017).
Hooijer, A. et al. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7, 1505–1514 (2010).
Joosten, H. The Global Peatland CO 2 Picture. Peatland Status and Drainage Related Emissions in All Countries of the World (Wetlands International, 2010).
Tubiello, F., Biancalani, R., Salvatore, M., Rossi, S. & Conchedda, G. A worldwide assessment of greenhouse gas emissions from drained organic soils. Sustainability 8, 371 (2016).
Leifeld, J. et al. Pyrogenic carbon contributes substantially to carbon storage in intact and degraded Northern Peatlands. Land Degrad. Dev. 29, 2082–2091 (2018).
Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24, 1028–1042 (2014).
Yu, Z. C., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the last glacial maximum. Geophys. Res. Lett. 37, L13402 (2010).
Hapsari, K. A. et al. Environmental dynamics and carbon accumulation rate of a tropical peatland in Central Sumatra, Indonesia. Quat. Sci. Rev. 169, 173–187 (2017).
Rossi, S. et al. FAOSTAT estimates of greenhouse gas emissions from biomass and peat fires. Climatic Change 135, 699–711 (2016).
Mickler, R. A., Welch, D. P. & Bailey, A. D. Carbon emissions during wildland fire on a North American temperate peatland. Fire Ecol. 13, 34–57 (2017).
Guo, M. et al. CO2 emissions from the 2010 Russian wildfires using GOSAT data. Environ. Pollut. 226, 60–68 (2017).
Joosten, H. & Clarke, D. Wise Use of Mires and Peatlands—Background and Principles Including a Framework for Decision-making (International Mire Conservation Group & International Peat Society, 2002).
Mineral Commodity Summaries 1997–2018 (USGS, accessed 31 January 2019); https://minerals.usgs.gov/minerals/pubs/commodity/peat/index.html#pubs
Tcvetkov, P. S. The history, present status and future prospects of the Russian fuel peat industry. Mires Peat 19, 11–12 (2017).
Gibson, C. M. et al. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 9, 3041 (2018).
Author information
Authors and Affiliations
Contributions
J.L. designed the study and prepared the manuscript with contributions from C.W.-G. and S.P.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Climate Change thanks Kuno Kasak and Debjani Sihi for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–8 and Table 1.
Rights and permissions
About this article
Cite this article
Leifeld, J., Wüst-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Chang. 9, 945–947 (2019). https://doi.org/10.1038/s41558-019-0615-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41558-019-0615-5
This article is cited by
-
Peatland restoration increases water storage and attenuates downstream stormflow but does not guarantee an immediate reversal of long-term ecohydrological degradation
Scientific Reports (2023)
-
Peatland groundwater level in the Indonesian maritime continent as an alert for El Niño and moderate positive Indian Ocean dipole events
Scientific Reports (2023)
-
Wildfire and degradation accelerate northern peatland carbon release
Nature Climate Change (2023)
-
Effect of rewetting degraded peatlands on carbon fluxes: a meta-analysis
Mitigation and Adaptation Strategies for Global Change (2023)
-
Soil nitrous oxide and methane fluxes from a land-use change transition of primary forest to oil palm in an Indonesian peatland
Biogeochemistry (2023)