Sea-level-rise-induced threats depend on the size of tide-influenced estuaries worldwide

Article metrics

Abstract

The effects of sea-level rise on the future morphological functioning of estuaries are largely unknown because tidal amplitudes will change due to combined deepening of the estuary mouth and shifting amphidromic points at sea. Fluvial sediment supply is also globally decreasing, which hampers infilling necessary to maintain elevation relative to sea level. Here we model 36 estuaries worldwide with varying sizes, shapes and hydrodynamic characteristics, and find that small shallow estuaries and large deep estuaries respond in opposite ways to sea-level rise. Large estuaries are threatened by sediment starvation and therefore loss of intertidal area, particularly if tidal amplitude decreases at the mouth. In contrast, small estuaries face enhanced flood risks and are more sensitive to tidal amplification on sea-level-rise-induced deepening. Estuary widening can partly mitigate adverse effects. In large estuaries, expanded intertidal areas increase tidal prism and available erodible sediment for adaptation, whereas it slightly reduces tidal amplification in small estuaries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: SLR effects on boundary conditions of estuaries.
Fig. 2: Estuary size dependency on SLR-induced threats.
Fig. 3: Relative upstream sediment input from the catchment versus the range of required sediment for 1-m SLR depending on the change of tidal amplitude.
Fig. 4: Effects of managed realignment.
Fig. 5: Main responses of estuaries to SLR.

Data availability

All open access data are available in figures, tables and supplementary information. If used from other sources, it is indicated with references. Estuary outlines were collected from Google Earth and are available in the supplementary information of ref. 17. Along-channel width profiles, input values to run the morphological tool and the hydrodynamic model are available from Zenodo (https://doi.org/10.5281/zenodo.3406518). Other data are provided in the figures, tables and references.

Code availability

The code for the 1D hydrodynamic model is available from Zenodo (https://doi.org/10.5281/zenodo.3406518). The code for the morphological tool has been referenced32 and is available on GitHub (https://github.com/JasperLeuven/EstuarineMorphologyEstimator/).

References

  1. 1.

    Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1137–1216 (IPCC, Cambridge Univ. Press, 2013).

  2. 2.

    Wong, P. P. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 361–409 (IPCC, Cambridge Univ. Press, 2014).

  3. 3.

    de Vriend, H. J., Wang, Z. B., Ysebaert, T., Herman, P. M. & Ding, P. Eco-morphological problems in the Yangtze Estuary and the Western Scheldt. Wetlands 31, 1033–1042 (2011).

  4. 4.

    Bouma, H., de Jong, D. J., Twisk, F. & Wolfstein, K. A Dutch Ecotope System for Coastal Waters (ZES. 1): To Map the Potential Occurence of Ecological Communities in Dutch Coastal and Transitional Waters Technical Report No. RIKZ/2005.024 (Rijkswaterstaat, 2005).

  5. 5.

    Ashworth, P. J., Best, J. L. & Parsons, D. R. Fluvial–Tidal Sedimentology (Elsevier, 2015).

  6. 6.

    Nicholls, R. J. & Cazenave, A. Sea-level rise and its impact on coastal zones. Science 328, 1517–1520 (2010).

  7. 7.

    Auerbach, L. W. et al. Flood risk of natural and embanked landscapes on the Ganges–Brahmaputra tidal delta plain. Nat. Clim. Change 5, 153–157 (2015).

  8. 8.

    Mao, Q., Shi, P., Yin, K., Gan, J. & Qi, Y. Tides and tidal currents in the Pearl River Estuary. Cont. Shelf Res. 24, 1797–1808 (2004).

  9. 9.

    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).

  10. 10.

    Essink, K. Ecological effects of dumping of dredged sediments; options for management. J. Coast. Conserv. 5, 69–80 (1999).

  11. 11.

    Yuan, R. & Zhu, J. The effects of dredging on tidal range and saltwater intrusion in the Pearl River Estuary. J. Coast. Res. 31, 1357–1362 (2015).

  12. 12.

    Balke, T., Stock, M., Jensen, K., Bouma, T. J. & Kleyer, M. A global analysis of the seaward salt marsh extent: the importance of tidal range. Water Resour. Res. 52, 3775–3786 (2016).

  13. 13.

    Ensing, E., de Swart, H. E. & Schuttelaars, H. M. Sensitivity of tidal motion in well-mixed estuaries to cross-sectional shape, deepening and sea-level rise. Ocean Dynam. 65, 933–950 (2015).

  14. 14.

    Du, J. et al. Tidal response to sea-level rise in different types of estuaries: the importance of length, bathymetry and geometry. Geophys. Res. Lett. 45, 227–235 (2018).

  15. 15.

    Lentz, E. E. et al. Evaluation of dynamic coastal response to sea-level rise modifies inundation likelihood. Nat. Clim. Change 6, 696–700 (2016).

  16. 16.

    Kirwan, M. L. & Guntenspergen, G. R. Influence of tidal range on the stability of coastal marshland. J. Geophys. Res. 115, F02009 (2010).

  17. 17.

    Leuven, J. R. F. W., de Haas, T., Braat, L. & Kleinhans, M. G. Topographic forcing of tidal sand bar patterns for irregular estuary planforms. Earth Surf. Process. Landf. 43, 172–186 (2018).

  18. 18.

    Leuven, J. R. F. W., Selaković, S. & Kleinhans, M. G. Morphology of bar-built estuaries: empirical relation between planform shape and depth distribution. Earth Surf. Dyn. 6, 763–778 (2018).

  19. 19.

    Idier, D., Paris, F., Le Cozannet, G., Boulahya, F. & Dumas, F. Sea-level rise impacts on the tides of the european shelf. Cont. Shelf Res. 137, 56–71 (2017).

  20. 20.

    Pickering, M. et al. The impact of future sea-level rise on the global tides. Cont. Shelf Res. 142, 50–68 (2017).

  21. 21.

    Friedrichs, C. T. & Aubrey, D. G. Non-linear tidal distortion in shallow well-mixed estuaries: a synthesis. Estuar. Coast. Shelf Sci. 27, 521–545 (1988).

  22. 22.

    Savenije, H. H. G. Salinity and Tides in Alluvial Estuaries (Elsevier, 2006).

  23. 23.

    Boelens, T., Schuttelaars, H., Schramkowski, G. & de Mulder, T. The effect of geometry and tidal forcing on hydrodynamics and net sediment transport in semi-enclosed tidal basins. Ocean Dyn. 68, 1285–1309 (2018).

  24. 24.

    Silvestri, S., D’Alpaos, A., Nordio, G. & Carniello, L. Anthropogenic modifications can significantly influence the local mean sea level and affect the survival of salt marshes in shallow tidal systems. J. Geophys. Res. Earth Surf. 123, 996–1012 (2018).

  25. 25.

    Temmerman, S. & Kirwan, M. L. Building land with a rising sea. Science 349, 588–589 (2015).

  26. 26.

    Kirwan, M. L. & Megonigal, J. P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013).

  27. 27.

    Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).

  28. 28.

    Walling, D. E. & Fang, D. Recent trends in the suspended sediment loads of the world’s rivers. Glob. Planet. Change 39, 111–126 (2003).

  29. 29.

    Yang, S. L. et al. Impact of dams on Yangtze River sediment supply to the sea and delta intertidal wetland response. J. Geophys. Res. 110, F03006 (2005).

  30. 30.

    Dunn, F. E. et al. Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress. Environ. Res. Lett. 14, 084034 (2019).

  31. 31.

    Turner, R. K., Burgess, D., Hadley, D., Coombes, E. & Jackson, N. A cost–benefit appraisal of coastal managed realignment policy. Glob. Environ. Change 17, 397–407 (2007).

  32. 32.

    Leuven, J. R. F. W., Verhoeve, S., van Dijk, W. M., Selaković, S. & Kleinhans, M. G. Empirical assessment tool for bathymetry, flow velocity and salinity in estuaries based on tidal amplitude and remotely-sensed imagery. Remote Sens. 10, 1915 (2018).

  33. 33.

    Jarrett, J. T. Tidal Prism: Inlet Area Relationships Technical Report No. WES-GITI-3 (US Army Engineer Waterways Experiment Station, 1976).

  34. 34.

    Eysink, W. D. Morphologic response of tidal basins to changes. Coast. Eng. Proc. 22, 1948–1961 (1990).

  35. 35.

    Gisen, J. I. A. & Savenije, H. H. G. Estimating bankfull discharge and depth in ungauged estuaries. Water Resour. Res. 51, 2298–2316 (2015).

  36. 36.

    Langbein, W. The hydraulic geometry of a shallow estuary. Hydrol. Sci. J. 8, 84–94 (1963).

  37. 37.

    Dronkers, J. Convergence of estuarine channels. Cont. Shelf Res. 144, 120–133 (2017).

  38. 38.

    Kirwan, M. L., Walters, D. C., Reay, W. G. & Carr, J. A. Sea-level driven marsh expansion in a coupled model of marsh erosion and migration. Geophys. Res. Lett. 43, 4366–4373 (2016).

  39. 39.

    Milliman, J. D. & Syvitski, J. P. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol. 100, 525–544 (1992).

  40. 40.

    Wang, Z. B., Jeuken, M.-C. J. L., Gerritsen, H., de Vriend, H. J. & Kornman, B. A. Morphology and asymmetry of the vertical tide in the Westerschelde estuary. Cont. Shelf Res. 22, 2599–2609 (2002).

  41. 41.

    Friedrichs, C. T. in Contemporary Issues in Estuarine Physics (ed. Valle-Levinson, A.) 27–61 (Cambridge Univ. Press, 2010).

  42. 42.

    Kwadijk, J. C. J. et al. Using adaptation tipping points to prepare for climate change and sea-level rise: a case study in the Netherlands. WIREs. Clim. Change 1, 729–740 (2010).

  43. 43.

    Haasnoot, M., Kwakkel, J. H., Walker, W. E. & ter Maat, J. Dynamic adaptive policy pathways: a method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Change 23, 485–498 (2013).

  44. 44.

    Wang, Z. B., Elias, E. P., van der Spek, A. J. & Lodder, Q. J. Sediment budget and morphological development of the Dutch Wadden Sea: impact of accelerated sea-level rise and subsidence until 2100. Neth. J. Geosci. 97, 183–214 (2018).

  45. 45.

    Leuven, J. R. F. W., Kleinhans, M. G., Weisscher, S. A. H. & van der Vegt, M. Tidal sand bar dimensions and shapes in estuaries. Earth Sci. Rev. 161, 204–233 (2016).

  46. 46.

    Geleynse, N. et al. Controls on river delta formation; insights from numerical modelling. Earth Planet. Sci. Lett. 302, 217–226 (2011).

  47. 47.

    van der Wegen, M. Numerical modeling of the impact of sea-level rise on tidal basin morphodynamics. J. Geophys. Res. Earth Surf. 118, 447–460 (2013).

  48. 48.

    Nnafie, A., van Oyen, T., de Maerschalck, B., van der Vegt, M. & van der Wegen, M. Estuarine channel evolution in response to closure of secondary basins: an observational and morphodynamic modeling study of the Western Scheldt Estuary. J. Geophys. Res. Earth Surf. 123, 167–186 (2018).

  49. 49.

    Rijke, J., van Herk, S., Zevenbergen, C. & Ashley, R. Room for the river: delivering integrated river basin management in the Netherlands. Int. J. River Basin Manag. 10, 369–382 (2012).

  50. 50.

    van de Lageweg, W. I., Braat, L., Parsons, D. R. & Kleinhans, M. G. Controls on mud distribution and architecture along the fluvial-to-marine transition. Geology 46, 971–974 (2018).

  51. 51.

    Erkens, G. Sediment Dynamics in the Rhine Catchment: Quantification of Fluvial Response to Climate Change and Human Impact. PhD thesis, Utrecht Univ. (2009).

  52. 52.

    Vos, P. C. Origin of the Dutch Coastal Landscape: Long-term Landscape Evolution of the Netherlands during the Holocene, Described and Visualized in National, Regional and Local Palaeogeographical Map Series. PhD thesis, Utrecht Univ. (2015).

  53. 53.

    de Haas, T. et al. Holocene evolution of tidal systems in the Netherlands: effects of rivers, coastal boundary conditions, eco-engineering species, inherited relief and human interference. Earth Sci. Rev. 177, 139–163 (2017).

  54. 54.

    Goodbred, S. L. Jr & Kuehl, S. A. Holocene and modern sediment budgets for the Ganges–Brahmaputra river system: evidence for highstand dispersal to flood-plain, shelf, and deep-sea depocenters. Geology 27, 559–562 (1999).

  55. 55.

    Hori, K. et al. Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) Delta, China. Geomorphology 41, 233–248 (2001).

  56. 56.

    Saito, Y., Yang, Z. & Hori, K. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene. Geomorphology 41, 219–231 (2001).

  57. 57.

    Ta, T. K. O. et al. Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam. Quat. Sci. Rev. 21, 1807–1819 (2002).

  58. 58.

    Anderson, J. B., Rodriguez, A. B., Milliken, K. & Taviani, M. in Response of Upper Gulf Coast Estuaries to Holocene Climate Change and Sea-Level Rise Special Paper 443 (eds Anderson, J. B. & Rodriguez, A. B.) 89–104 (Geological Society of America, 2008).

  59. 59.

    Tanabe, S., Nakanishi, T., Ishihara, Y. & Nakashima, R. Millennial-scale stratigraphy of a tide-dominated incised valley during the last 14 kyr: spatial and quantitative reconstruction in the Tokyo lowland, central Japan. Sedimentology 62, 1837–1872 (2015).

  60. 60.

    Koster, K., Stafleu, J. & Cohen, K. M. Generic 3D interpolation of Holocene base-level rise and provision of accommodation space, developed for the Netherlands coastal plain and infilled palaeovalleys. Basin Res. 29, 775–797 (2017).

  61. 61.

    DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

Download references

Acknowledgements

This work was funded by the Netherlands Science Foundation NWO-TTW under Vici grant no. 016.140.316/13710 (to M.G.K.).

Author information

J.R.F.W.L., M.G.K., T.J.B. conceived and designed the study. J.R.F.W.L. and H.J.P. collected the data. J.R.F.W.L. and M.v.d.V. carried out the modelling. J.R.F.W.L. wrote the manuscript, with contributions from H.J.P., M.v.d.V., T.J.B. and M.G.K.

Correspondence to Jasper R. F. W. Leuven.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer Review Information Nature Climate Change thanks Erika Lentz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1, Figs. 1–7, Tables 1–4 and references.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leuven, J.R.F.W., Pierik, H.J., Vegt, M.v.d. et al. Sea-level-rise-induced threats depend on the size of tide-influenced estuaries worldwide. Nat. Clim. Chang. (2019) doi:10.1038/s41558-019-0608-4

Download citation