Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhanced equatorial warming causes deep-tropical contraction and subtropical monsoon shift


Under anthropogenic warming, deep-tropical ascent of the intertropical convergence zone (ITCZ) is projected to contract equatorward1,2,3 while subtropical descent associated with the Hadley cell edge is predicted to expand poleward4. These changes have important implications for regional climate2,5,6,7, but their mechanisms are not well understood. Here we reveal a key role of enhanced equatorial surface warming (EEW) in driving the deep-tropical contraction and modulating the Hadley expansion. By shifting the seasonally warmed sea surface temperature equatorward, EEW reduces the meridional migration of the seasonal ITCZ and causes an annual-mean deep-tropical contraction. This process further contracts the subtropical circulation, as seen during El Niño, and counteracts the Hadley expansion caused by the global-scale warming. The EEW-induced contraction even dominates in the Northern Hemisphere early summer (June–July), when atmospheric circulation responses to the global-scale warming are weak8. Regionally, this alters the East Asian summer monsoon, shifting both the subtropical jet and Meiyu–Baiu rainband equatorward. Among models in Phase 5 of the Coupled Model Intercomparison Project9, the degrees of the equatorward shift in the ITCZ, the early-summer subtropical circulation and the East Asian summer monsoon are correlated with EEW. Our results suggest that a better constraint on EEW is critical for accurate projection of tropical and subtropical climate change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Deep-tropical contraction integrated from equatorward-shifted seasonal ITCZ driven by EEW.
Fig. 2: Denial experiment and intermodel spread of the deep-tropical contraction.
Fig. 3: Seasonal-dependent contraction effect of EEW.
Fig. 4: Equatorward shift of the EASM controlled by EEW.

Data availability

The data supporting the findings of this study are available within the manuscript and its supplementary information. Data associated with the GFDL-AM2.1 simulations are available at The AMIP and CMIP outputs can be obtained from the CMIP5 archive, accessed through

Code availability

The data analysis code is available from the corresponding author on request.


  1. 1.

    Huang, P., Xie, S.-P., Hu, K., Huang, G. & Huang, R. Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci. 6, 357–361 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Lau, W. K. M. & Kim, K.-M. Robust Hadley circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections. Proc. Natl. Acad. Sci. USA 112, 3630–3635 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Byrne, M. P. & Schneider, T. Narrowing of the ITCZ in a warming climate: physical mechanisms. Geophys. Res. Lett. 43, 11350–11357 (2016).

    Article  Google Scholar 

  4. 4.

    Lu, J., Vecchi, G. A. & Reichler, T. Expansion of the Hadley cell under global warming. Geophys. Res. Lett. 34, L06805 (2007).

    Google Scholar 

  5. 5.

    Scheff, J. & Frierson, D. M. W. Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett. 39, L18704 (2012).

    Article  Google Scholar 

  6. 6.

    Norris, J. R. et al. Evidence for climate change in the satellite cloud record. Nature 536, 72–75 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Kossin, J. P., Emanuel, K. A. & Vecchi, G. A. The poleward migration of the location of tropical cyclone maximum intensity. Nature 509, 349–352 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Shaw, T. A. & Voigt, A. Tug of war on summertime circulation between radiative forcing and sea surface warming. Nat. Geosci. 8, 560–566 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  10. 10.

    Neelin, J. D., Chou, C. & Su, H. Tropical drought regions in global warming and El Niño teleconnections. Geophys. Res. Lett. 30, 2275 (2003).

    Article  Google Scholar 

  11. 11.

    Byrne, M. P. & Schneider, T. Energetic constraints on the width of the intertropical convergence zone. J. Clim. 29, 4709–4721 (2016).

    Article  Google Scholar 

  12. 12.

    Byrne, M. P., Pendergrass, A. G., Rapp, A. D. & Wodzicki, K. R. Response of the intertropical convergence zone to climate change: location, width, and strength. Curr. Clim. Change Rep. 4, 355–370 (2018).

    Article  Google Scholar 

  13. 13.

    Held, I. M. The general circulation of the atmosphere. In Proc. 2000 Program of Study in Geophysical Fluid Dynamics 1–54 (Woods Hole Oceanographic Institution, 2000).

  14. 14.

    Walker, C. C. & Schneider, T. Eddy influences on Hadley circulations: simulations with an idealized GCM. J. Atmos. Sci. 63, 3333–3350 (2006).

    Article  Google Scholar 

  15. 15.

    Frierson, D. M. W., Lu, J. & Chen, G. Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett. 34, L18804 (2007).

    Article  Google Scholar 

  16. 16.

    Liu, Z., Vavrus, S., He, F., Wen, N. & Zhong, Y. Rethinking tropical ocean response to global warming: the enhanced equatorial warming. J. Clim. 18, 4684–4700 (2005).

    Article  Google Scholar 

  17. 17.

    Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).

    Article  Google Scholar 

  18. 18.

    Dai, A. & Wigley, T. M. L. Global patterns of ENSO-induced precipitation. Geophys. Res. Lett. 27, 1283–1286 (2000).

    Article  Google Scholar 

  19. 19.

    Seager, R., Harnik, N., Kushnir, Y., Robinson, W. & Miller, J. Mechanisms of hemispherically symmetric climate variability. J. Clim. 16, 2960–2978 (2003).

    Article  Google Scholar 

  20. 20.

    Lu, J., Chen, G. & Frierson, D. M. W. Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Clim. 21, 5835–5851 (2008).

    Article  Google Scholar 

  21. 21.

    Donohoe, A., Atwood, A. R. & Byrne, M. P. Controls on the width of tropical precipitation and its contraction under global warming. Geophys. Res. Lett. (2019).

    Article  Google Scholar 

  22. 22.

    Emanuel, K. A. On thermally direct circulations in moist atmospheres. J. Atmos. Sci. 52, 1529–1534 (1995).

    Article  Google Scholar 

  23. 23.

    Privé, N. C. & Plumb, R. A. Monsoon dynamics with interactive forcing. Part I: axisymmetric. Stud. J. Atmos. Sci. 64, 1417–1430 (2007).

    Article  Google Scholar 

  24. 24.

    Neelin, J. D. & Held, I. M. Modeling tropical convergence based on the moist static energy budget. Mon. Weather Rev. 115, 3–12 (1987).

    Article  Google Scholar 

  25. 25.

    Kang, S. M. & Lu, J. Expansion of the Hadley cell under global warming: winter versus summer. J. Clim. 25, 8387–8393 (2012).

    Article  Google Scholar 

  26. 26.

    Watt-Meyer, O. & Frierson, D. M. W. ITCZ width controls on Hadley cell extent and eddy-driven jet position and their response to warming. J. Clim. 32, 1151–1166 (2018).

    Article  Google Scholar 

  27. 27.

    Hilgenbrink, C. C. & Hartmann, D. L. The response of Hadley circulation extent to an idealized representation of poleward ocean heat transport in an aquaplanet GCM. J. Clim. 31, 9753–9770 (2018).

    Article  Google Scholar 

  28. 28.

    Chen, G., Plumb, R. A. & Lu, J. Sensitivities of zonal mean atmospheric circulation to SST warming in an aqua-planet model. Geophys. Res. Lett. 37, L12701 (2010).

    Google Scholar 

  29. 29.

    Tandon, N. F., Gerber, E. P., Sobel, A. H. & Polvani, L. M. Understanding Hadley cell expansion versus contraction: insights from simplified models and implications for recent observations. J. Clim. 26, 4304–4321 (2012).

    Article  Google Scholar 

  30. 30.

    Sun, L., Chen, G. & Lu, J. Sensitivities and mechanisms of the zonal mean atmospheric circulation response to tropical warming. J. Atmos. Sci. 70, 2487–2504 (2013).

    Article  Google Scholar 

  31. 31.

    Sampe, T. & Xie, S.-P. Large-scale dynamics of the Meiyu-Baiu rainband: environmental forcing by the westerly jet. J. Clim. 23, 113–134 (2010).

    Article  Google Scholar 

  32. 32.

    Chen, J. & Bordoni, S. Orographic effects of the Tibetan Plateau on the East Asian summer monsoon: an energetic perspective. J. Clim. 27, 3052–3072 (2014).

    Article  Google Scholar 

  33. 33.

    Xie, S.-P. et al. Global warming pattern formation: sea surface temperature and rainfall. J. Clim. 23, 966–986 (2010).

    Article  Google Scholar 

  34. 34.

    Broccoli, A. J., Dahl, K. A. & Stouffer, R. J. Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett. 33, L01702 (2006).

    Article  Google Scholar 

  35. 35.

    Kang, S. M., Held, I. M., Frierson, D. M. W. & Zhao, M. The response of the ITCZ to extratropical thermal forcing: idealized slab-ocean experiments with a GCM. J. Clim. 21, 3521–3532 (2008).

    Article  Google Scholar 

  36. 36.

    Schneider, T., Bischoff, T. & Haug, G. H. Migrations and dynamics of the intertropical convergence zone. Nature 513, 45–53 (2014).

    CAS  Article  Google Scholar 

  37. 37.

    GAMDT. The new GFDL global atmosphere and land model AM2–LM2: evaluation with prescribed SST simulations. J. Clim. 17, 4641–4673 (2004).

  38. 38.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  39. 39.

    Bolton, D. The computation of equivalent potential temperature. Mon. Weather Rev. 108, 1046–1053 (1980).

    Article  Google Scholar 

Download references


This work is supported by the National Science Foundation (grant no. NSF-1637450) and Laboratory Directed Research and Development funding from Berkeley Lab, provided by the Director, Office of Science, of the US Department of Energy under contract no. DE-AC02-05CH11231. Numerical simulations were conducted using the computing resources provided by the NCAR Cheyenne: HPE/SGI ICE XA System (University Community Computing,

Author information




W.Z. designed the research, conducted the simulations and analysed the results. S.-P.X. and D.Y. contributed to improving the analysis and interpretation. W.Z. wrote the first draft, and all authors discussed and edited the paper.

Corresponding author

Correspondence to Wenyu Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Michael Byrne and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Xie, SP. & Yang, D. Enhanced equatorial warming causes deep-tropical contraction and subtropical monsoon shift. Nat. Clim. Chang. 9, 834–839 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing