Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Contribution of the land sector to a 1.5 °C world

Abstract

The Paris Agreement introduced an ambitious goal of limiting warming to 1.5 °C above pre-industrial levels. Here we combine a review of modelled pathways and literature on mitigation strategies, and develop a land-sector roadmap of priority measures and regions that can help to achieve the 1.5 °C temperature goal. Transforming the land sector and deploying measures in agriculture, forestry, wetlands and bioenergy could feasibly and sustainably contribute about 30%, or 15 billion tonnes of carbon dioxide equivalent (GtCO2e) per year, of the global mitigation needed in 2050 to deliver on the 1.5 °C target, but it will require substantially more effort than the 2 °C target. Risks and barriers must be addressed and incentives will be necessary to scale up mitigation while maximizing sustainable development, food security and environmental co-benefits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Global net anthropogenic CO2 emission pathways in BAU, 2 °C and 1.5 °C model scenarios.
Fig. 2: GHG emission pathways in the land sector across model scenarios.
Fig. 3: Land-cover balance in million hectares (Mha) in BAU, 2 °C and 1.5 °C model scenarios.
Fig. 4: Global land-based mitigation potential in 2020–2050 by activity type from bottom-up literature review.
Fig. 5: Land-based mitigation potential in 2020–2050 by region.
Fig. 6: Land-sector roadmap for 2050.

Data availability

The modelled data used for this study are available in the IAMC 1.5 °C Scenario Explorer and Data hosted by IIASA. The rest of the data that support the findings of this study are available in the Supplementary Information files and from the corresponding author upon request.

References

  1. 1.

    Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Rockström, J. et al. A roadmap for rapid decarbonization. Science 355, 1269–1271 (2017). An economy-wide roadmap of reducing emissions by 50% per decade to limit warming to 2 °C and 1.5 °C.

    Article  Google Scholar 

  3. 3.

    Schleussner, C. F. et al. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Change 6, 827–835 (2016).

    Article  Google Scholar 

  4. 4.

    Rogelj, J. et al. in Special Report on Global Warming of 1.5 °C (eds. Masson-Delmonte, V. et al.) Ch. 2 (IPPC, 2018). Chapter 2 of the 2018 IPCC Special Report, providing a comprehensive assessment of 1.5 °C pathways.

  5. 5.

    Peters, G. P. & Geden, O. Catalysing a political shift from low to negative carbon. Nat. Clim. Change 7, 619–621 (2017).

    Article  Google Scholar 

  6. 6.

    Le Quéré, C. et al. Global carbon budget 2017. Earth Syst. Sci. Data 10, 405–448 (2018).

    Article  Google Scholar 

  7. 7.

    Smith, P. et al. in Climate Change 2014: Mitigation of Climate Change, 811–922 (IPCC, Cambridge Univ. Press, 2014). The latest IPCC assessment report of mitigation potential estimates in AFOLU activities.

  8. 8.

    Alkama, R. R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Forsell, N. et al. Assessing the INDCs’ land use, land use change, and forest emission projections. Carbon Balance Manag. 11, 26 (2016).

    Article  Google Scholar 

  10. 10.

    Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7, 220–226 (2017).

    Article  Google Scholar 

  11. 11.

    Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018). Up-to-date assessment of 1.5 °C scenarios under the five different shared socio-economic pathways (SSPs).

    CAS  Article  Google Scholar 

  12. 12.

    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017). An assessment of land-use and land-cover futures under the different SSP storylines and their resulting GHGs and costs.

    Article  Google Scholar 

  13. 13.

    Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  14. 14.

    van Vuuren, D. P. et al. Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nat. Clim. Change 8, 391–397 (2018).

    Article  Google Scholar 

  15. 15.

    Dickie, A. et al. Strategies for Mitigating Climate Change in Agriculture (Climate Focus/California Environmental Associates, 2014). An in-depth report on mitigation measures in agriculture, outlining GHG potential, regional strategies, risks and co-benefits.

  16. 16.

    Frank, S. et al. Reducing greenhouse gas emissions in agriculture without compromising food security? Environ. Res. Lett. 12, 105004 (2017).

    Article  CAS  Google Scholar 

  17. 17.

    Fuss, S. et al. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018). An in-depth review of negative emissions, including A/R and BECCS, outlining their mitigation potential, costs and risks.

  18. 18.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 114, 11645–11650 (2017). A recent study providing global and regional mitigation estimates of natural, land-based activities.

    CAS  Article  Google Scholar 

  19. 19.

    Smith, P. et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Change Biol. 19, 2285–2302 (2013).

    Article  Google Scholar 

  20. 20.

    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016). A review of negative emissions technologies and their impacts on GHGs, land, water, albedo, nutrients and energy.

    CAS  Article  Google Scholar 

  21. 21.

    Wollenberg, E. et al. Reducing emissions from agriculture to meet the 2 °C target. Glob. Change Biol. 22, 3859–3864 (2016). A study examining the needed and feasible emissions reductions in agriculture by 2030 in a 2 °C scenario.

    Article  Google Scholar 

  22. 22.

    Huppmann, D. et al. IAMC 1.5 °C Scenario Explorer and Data hosted by IIASA. https://doi.org/10.22022/SR15/08-2018.15429 (IIASA, 2018).

  23. 23.

    Goodwin, P. et al. Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints. Nat. Geosci. 11, 102–107 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Schurer, A. P. et al. Interpretations of the Paris climate target. Nat. Geosci. 11, 220–221 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    Tokarska, K. B. & Gillett, N. P. Cumulative carbon emissions budgets consistent with 1.5 °C global warming. Nat. Clim. Change 8, 296–299 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    Walsh, B. et al. Pathways for balancing CO2 emissions and sinks. Nat. Commun. 8, 14856 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Grubler, A. et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Energy 3, 515–527 (2018).

    Article  Google Scholar 

  29. 29.

    Holz, C., Siegel, L. S., Johnston, E., Jones, A. P. & Sterman, J. J. Ratcheting ambition to limit warming to 1.5 °C—trade-offs between emission reductions and carbon dioxide removal. Environ. Res. Lett. 13, 64028 (2018).

    Article  CAS  Google Scholar 

  30. 30.

    Creutzig, F. Economic and ecological views on climate change mitigation with bioenergy and negative emissions. GCB Bioenergy https://doi.org/10.1111/gcbb.12235 (2016).

    Article  Google Scholar 

  31. 31.

    Dooley, K. & Kartha, S. Land-based negative emissions: risks for climate mitigation and impacts on sustainable development. Int. Environ. Agreem. Polit. Law Econ. 18, 79–98 (2018).

    Google Scholar 

  32. 32.

    Fajardy, M. & Mac Dowell, N. Can BECCS deliver sustainable and resource efficient negative emissions? Energy Environ. Sci. 10, 1389–1426 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Haberl, H., Beringer, T., Bhattacharya, S. C., Erb, K. H. & Hoogwijk, M. The global technical potential of bio-energy in 2050 considering sustainability constraints. Curr. Opin. Environ. Sustain. 2, 394–403 (2010).

    Article  Google Scholar 

  34. 34.

    Creutzig, F. et al. Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7, 916–944 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Turner, P. A. et al. The global overlap of bioenergy and carbon sequestration potential. Clim. Change 148, 1–10 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Heck, V., Gerten, D., Lucht, W. & Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Change 8, 151–155 (2018).

    CAS  Article  Google Scholar 

  37. 37.

    Humpenöder, F. et al. Large-scale bioenergy production: how to resolve sustainability trade-offs? Environ. Res. Lett. 13, 024011 (2018).

    Article  CAS  Google Scholar 

  38. 38.

    Obersteiner, M. et al. How to spend a dwindling greenhouse gas budget. Nat. Clim. Change 8, 7–10 (2018).

    Article  Google Scholar 

  39. 39.

    Hooijer, A. et al. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7, 1505–1514 (2010).

    CAS  Article  Google Scholar 

  40. 40.

    Pendleton, L. et al. Estimating global ‘blue carbon’ emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7, (2012).

    CAS  Article  Google Scholar 

  41. 41.

    Budiharta, S. et al. Restoring degraded tropical forests for carbon and biodiversity. Environ. Res. Lett. 9, (2014).

    Article  Google Scholar 

  42. 42.

    Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Glob. Environ. Change 43, 51–61 (2017).

    Article  Google Scholar 

  43. 43.

    Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Change Biol. 22, 1315–1324 (2016).

    Article  Google Scholar 

  44. 44.

    Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    Hawken, P. Project Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming (Penguin, 2017).

  46. 46.

    Houghton, R. A. & Nassikas, A. A. Negative emissions from stopping deforestation and forest degradation, globally. Glob. Change Biol. 24, 350–359 (2018).

    Article  Google Scholar 

  47. 47.

    Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).

    Article  Google Scholar 

  48. 48.

    Montzka, S. A., Dlugokencky, E. J. & Butler, J. H. Non-CO2 greenhouse gases and climate change. Nature 476, 43–50 (2011).

    CAS  Article  Google Scholar 

  49. 49.

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    CAS  Article  Google Scholar 

  50. 50.

    Bajželj, B. et al. Importance of food demand management for climate mitigation. Nat. Clim. Change 4, 924–929 (2014).

    Article  Google Scholar 

  51. 51.

    Bailis, R., Drigo, R., Ghilardi, A. & Masera, O. The carbon footprint of traditional woodfuels. Nat. Clim. Change 5, 266–272 (2015).

    CAS  Article  Google Scholar 

  52. 52.

    Tubiello, F. N. et al. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 8, (2013).

    Article  Google Scholar 

  53. 53.

    Henders, S., Persson, U. M. & Kastner, T. Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environ. Res. Lett. 10, 125012 (2015).

    Article  Google Scholar 

  54. 54.

    Zarin, D. J. et al. Can carbon emissions from tropical deforestation drop by 50% in 5 years? Glob. Change Biol. 22, 1336–1347 (2016).

    Article  Google Scholar 

  55. 55.

    NYDF Assessment Partners. Protecting and Restoring Forests: A Story of Large Commitments Yet Limited Progress—New York Declaration on Forests Five-Year Assessment Report (Climate Focus, 2019).

  56. 56.

    Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).

    Article  Google Scholar 

  57. 57.

    Lamb, A. et al. The potential for land sparing to offset greenhouse gas emissions from agriculture. Nat. Clim. Change 6, 488–492 (2016).

    Article  Google Scholar 

  58. 58.

    Griscom, B. W., Goodman, R. C., Burivalova, Z. & Putz, F. E. Carbon and biodiversity impacts of intensive versus extensive tropical forestry. Conserv. Lett. 11, (2018).

  59. 59.

    Luttrell, C., Sills, E., Aryani, R., Ekaputri, A. D. & Evinke, M. F. Beyond opportunity costs: who bears the implementation costs of reducing emissions from deforestation and degradation? Mitig. Adapt. Strateg. Glob. Change 23, 291–310 (2018).

    Article  Google Scholar 

  60. 60.

    Rodriguez, J. M., Molnar, J. J., Fazio, R. A., Sydnor, E. & Lowe, M. J. Barriers to adoption of sustainable agriculture practices: change agent perspectives. Renew. Agric. Food Syst. 24, 60–71 (2009).

    Article  Google Scholar 

  61. 61.

    Scherer, L. & Verburg, P. H. Mapping and linking supply- and demand-side measures in climate-smart agriculture. A review. Agron. Sustain. Dev. 37, 66 (2017).

    Article  Google Scholar 

  62. 62.

    Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change 6, 452–461 (2016).

    Article  Google Scholar 

  63. 63.

    Springmann, M., Godfray, H. C. J., Rayner, M. & Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl Acad. Sci. USA 113, 4146–4151 (2016).

    CAS  Article  Google Scholar 

  64. 64.

    Hedenus, F., Wirsenius, S. & Johansson, D. J. A. The importance of reduced meat and dairy consumption for meeting stringent climate change targets. Clim. Change 124, 79–91 (2014).

    Article  Google Scholar 

  65. 65.

    McLaren, D. A comparative global assessment of potential negative emissions technologies. Process Saf. Environ. Prot. 90, 489–500 (2012).

    CAS  Article  Google Scholar 

  66. 66.

    Miner, R. Impact of the Global Forest Industry on Atmospheric Greenhouse Gases. FAO Forestry Paper 159 (FAO, 2010).

  67. 67.

    Busch, J. & Engelmann, J. Cost-effectiveness of reducing emissions from tropical deforestation, 2016–2050. Environ. Res. Lett. 13, 015001 (2017).

    Article  CAS  Google Scholar 

  68. 68.

    Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).

    CAS  Article  Google Scholar 

  69. 69.

    Houghton, R. A., Byers, B. & Nassikas, A. A. A role for tropical forests in stabilizing atmospheric CO2. Nat. Clim. Change 5, 1022–1023 (2015).

    Article  Google Scholar 

  70. 70.

    Federici, S., Tubiello, F. N., Salvatore, M., Jacobs, H. & Schmidhuber, J. New estimates of CO2 forest emissions and removals: 1990–2015. Ecol. Manag. 352, 89–98 (2015).

    Article  Google Scholar 

  71. 71.

    Carter, S. et al. Mitigation of agricultural emissions in the tropics: comparing forest land-sparing options at the national level. Biogeosciences 12, 4809–4825 (2015).

    Article  Google Scholar 

  72. 72.

    Pearson, T. R. H., Brown, S., Murray, L. & Sidman, G. Greenhouse gas emissions from tropical forest degradation: an underestimated source. Carbon Balance Manag. 12, 3 (2017).

    Article  CAS  Google Scholar 

  73. 73.

    Howard, J. et al. Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ. 15, 42–50 (2017).

    Article  Google Scholar 

  74. 74.

    Lenton, T. in Geoengineering of the Climate System (eds. Harrison, R. M. & Hester, R. E.) 52–79 (Royal Society of Chemistry, 2014).

  75. 75.

    Lenton, T. M. The potential for land-based biological CO2 removal to lower future atmospheric CO2 concentration. Carbon Manag. 1, 145–160 (2010).

    CAS  Article  Google Scholar 

  76. 76.

    Kreidenweis, U. et al. Afforestation to mitigate climate change: impacts on food prices under consideration of albedo effects. Environ. Res. Lett. 11, 085001 (2016).

    Article  Google Scholar 

  77. 77.

    Yan, M., Liu, J. & Wang, Z. Global climate responses to land use and land cover changes over the past two millennia. Atmosphere (Basel) 8, 1–14 (2017).

    Google Scholar 

  78. 78.

    Sonntag, S., Pongratz, J., Reick, C. H. & Schmidt, H. Reforestation in a high-CO2 world—higher mitigation potential than expected, lower adaptation potential than hoped for. Geophys. Res. Lett. https://doi.org/10.1002/2016gl068824 (2016).

    CAS  Article  Google Scholar 

  79. 79.

    Sasaki, N. et al. Sustainable management of tropical forests can reduce carbon emissions and stabilize timber production. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2016.00050 (2016).

  80. 80.

    Sasaki, N., Chheng, K. & Ty, S. Managing production forests for timber production and carbon emission reductions under the REDD+ scheme. Environ. Sci. Policy 23, 35–44 (2012).

    Article  Google Scholar 

  81. 81.

    Zomer, R. J. et al. Global tree cover and biomass carbon on agricultural land: the contribution of agroforestry to global and national carbon budgets. Sci. Rep. 6, 1–12 (2016).

    Article  CAS  Google Scholar 

  82. 82.

    Couwenberg, J., Dommain, R. & Joosten, H. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob. Change Biol. 16, 1715–1732 (2010).

    Article  Google Scholar 

  83. 83.

    Lal, R. Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience 60, 708–721 (2010).

    Article  Google Scholar 

  84. 84.

    Conant, R. T., Cerri, C. E. P., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668 (2017).

    Article  Google Scholar 

  85. 85.

    Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

    CAS  Article  Google Scholar 

  86. 86.

    Henderson, B. B. et al. Greenhouse gas mitigation potential of the world’s grazing lands: modeling soil carbon and nitrogen fluxes of mitigation practices. Agric. Ecosyst. Environ. 207, 91–100 (2015).

    CAS  Article  Google Scholar 

  87. 87.

    Sommer, R. & Bossio, D. Dynamics and climate change mitigation potential of soil organic carbon sequestration. J. Environ. Manag. 144, 83–87 (2014).

    CAS  Article  Google Scholar 

  88. 88.

    Poeplau, C. & Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—a meta-analysis. Agric. Ecosyst. Environ. 200, 33–41 (2015).

    CAS  Article  Google Scholar 

  89. 89.

    Powlson, D. S. et al. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Change 4, 678–683 (2014).

    Article  Google Scholar 

  90. 90.

    Zomer, R. J., Bossio, D. A., Sommer, R. & Verchot, L. V. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 7, 15554 (2017).

    Article  CAS  Google Scholar 

  91. 91.

    Roberts, K. G., Gloy, B. A., Joseph, S., Scott, N. R. & Lehmann, J. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environ. Sci. Technol. 44, 827–833 (2010).

    CAS  Article  Google Scholar 

  92. 92.

    Pratt, K. & Moran, D. Evaluating the cost-effectiveness of global biochar mitigation potential. Biomass Bioenerg. 34, 1149–1158 (2010).

    CAS  Article  Google Scholar 

  93. 93.

    Powell, T. W. R. & Lenton, T. M. Future carbon dioxide removal via biomass energy constrained by agricultural efficiency and dietary trends. Energy Environ. Sci. 5, 8116–8133 (2012).

    CAS  Article  Google Scholar 

  94. 94.

    Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).

    Article  CAS  Google Scholar 

  95. 95.

    Koornneef, J. et al. Global potential for biomass and carbon dioxide capture, transport and storage up to 2050. Int. J. Greenh. Gas. Control 11, 117–132 (2012).

    Article  Google Scholar 

  96. 96.

    Beach, R. H. et al. Global mitigation potential and costs of reducing agricultural non-CO2 greenhouse gas emissions through 2030. J. Integr. Environ. Sci. 12, 87–105 (2016).

    Article  Google Scholar 

  97. 97.

    Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    CAS  Article  Google Scholar 

  98. 98.

    Hussain, S. et al. Rice management interventions to mitigate greenhouse gas emissions: a review. Environ. Sci. Pollut. Res. 22, 3342–3360 (2015).

    Article  Google Scholar 

  99. 99.

    Hristov, A. N. et al. Mitigation of Greenhouse Gas Emissions in Livestock Production: A Review of Technical Options for Non-CO 2 Emissions. FAO Animal Production and Health Paper No. 177 (FAO, 2013).

  100. 100.

    Zhang, W. et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl Acad. Sci. USA 110, 8375–8380 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The design of and analysis in this study was guided by the feedback and recommendations of expert consultations (January and May 2017 workshops in London) and interviews, and we thank all those who contributed: J. Atkins, J. Busch, P. Ellis, J. Funk, T. Gopalakrishna, A. Kroeger, B. Lee, D. Lee, S. Lewis, G. Lomax, D. Mitchell, R. Rajão, J. Rogelj, C.-F. Schleussner, P. West, G. Wynne, A. Yang and D. Zarin. We thank E. Chak and M.-J. Valentino for helping to design the figures. This work was supported by the Children’s Investment Fund Foundation and the authors’ institutions and funding sources.

Author information

Affiliations

Authors

Contributions

S.R. led the study design and the writing of the paper with significant contributions from D.L., C.S., M.O. and S.F. S.R. and Z.H. conducted the synthesis of 1.5 °C pathways, S.R. and S.F. the model assessment land-sector pathways, S.R. and B.G. the bottom-up mitigation potential, and S.R. and C.S. the land-sector mitigation wedges. M.O., S.F., P.H. and M.G. developed the land-sector pathways and sensitivity analysis in GLOBIOM. B.G., L.D., O.F., N.H., T.H., Z.H., P.H., J.H., G.-J.N., A.P., M.J.S.S., J.S., P.S. and E.S. provided data and/or analysis and drafting of the paper.

Corresponding author

Correspondence to Stephanie Roe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Felix Creutzig and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Supplementary figures 1-11, Supplementary box 1, Supplementary tables 1-6, Supplementary references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roe, S., Streck, C., Obersteiner, M. et al. Contribution of the land sector to a 1.5 °C world. Nat. Clim. Chang. 9, 817–828 (2019). https://doi.org/10.1038/s41558-019-0591-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing