Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Climate change causes functionally colder winters for snow cover-dependent organisms


Refugia are habitats that allow organisms to persist when the environment makes persistence impossible elsewhere. The subnivium—the interface between snowpack and ground—is an important seasonal refugium that protects diverse species from extreme winter temperatures, but its future duration is uncertain with climate change. Here, we predict that subnivium duration will decrease from 126 d (2010–2014) to 110 d (2071–2100), which we have inferred using past and future duration of frozen ground with snow cover (Dsc) derived from remotely sensed datasets and climate projections. Concomitantly, duration of frozen ground without snow cover (Dfwos) at mid-latitudes is predicted to increase from 35 d to 45 d, with notable increases in the western United States, Europe, the Tibetan Plateau and Mongolia. In most areas, increasing winter temperatures were more important than precipitation for decreasing Dsc and increasing Dfwos. Thus, counter-intuitively, warming climate will cause longer Dfwos at mid-latitudes, causing functional winter cooling for subnivium-dependent organisms.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Average Tdiff for the period of frozen ground with snow cover minus average Tdiff for the period of frozen ground without snow cover.
Fig. 2: Observed and predicted values of Dsc and Dfwos for historical (1982–1986), current (2010–2014) and future (2071–2100) periods.
Fig. 3: Global trends in Dsc and Dfwos from 1982 to 2014.
Fig. 4: Global pattern of the effects of winter temperatures on Dsc and Dfwos.
Fig. 5: Global pattern of the relative importance of temperatures and precipitation for Dsc and Dfwos.
Fig. 6: Global patterns of the differences in Dsc and Dfwos between the current (1982–2014) and future (2071–2100) periods.

Data availability

All data used can be freely downloaded from Zenodo ( and are also available from the corresponding authors upon request.

Code availability

The Python and R code used for calculations and analyses can be accessed at GitHub ( and is also available from the corresponding authors upon request.


  1. Zhang, T. Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev. Geophys. 43, RG4002 (2005).

    Google Scholar 

  2. Pauli, J. N., Zuckerberg, B., Whiteman, J. P. & Porter, W. The subnivium: a deteriorating seasonal refugium. Front. Ecol. Environ. 11, 260–267 (2013).

    Article  Google Scholar 

  3. Curtis, J. T. The Vegetation of Wisconsin: An Ordination of Plant Communities (Univ. Wisconsin Press, 1959).

  4. Brown, P. J. & DeGaetano, A. T. A paradox of cooling winter soil surface temperatures in a warming northeastern United States. Agric. Meteorol. 151, 947–956 (2011).

    Article  Google Scholar 

  5. Groffman, P. M. et al. Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56, 135–150 (2001).

    Article  CAS  Google Scholar 

  6. Comerford, D. P. et al. Influence of experimental snow removal on root and canopy physiology of sugar maple trees in a northern hardwood forest. Oecologia 171, 261–269 (2013).

    Article  Google Scholar 

  7. Penczykowski, R. M., Connolly, B. M. & Barton, B. T. Winter is changing: trophic interactions under altered snow regimes. Food Webs 13, 80–91 (2017).

    Article  Google Scholar 

  8. Williams, C. M., Henry, H. A. L. & Sinclair, B. J. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol. Rev. 90, 214–235 (2015).

    Article  Google Scholar 

  9. Petty, S. K., Zuckerberg, B. & Pauli, J. N. Winter conditions and land cover structure the subnivium, a seasonal refuge beneath the snow. PLoS ONE 10, e0127613 (2015).

    Article  CAS  Google Scholar 

  10. Peng, S. et al. Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades. Environ. Res. Lett. 8, 014008 (2013).

    Article  Google Scholar 

  11. Choi, G., Robinson, D. A. & Kang, S. Changing Northern Hemisphere snow seasons. J. Clim. 23, 5305–5310 (2010).

    Article  Google Scholar 

  12. Brown, R. D. & Robinson, D. A. Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere 5, 219–229 (2011).

    Article  Google Scholar 

  13. Hori, M. et al. A 38-year (1978–2015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors. Remote Sens. Environ. 191, 402–418 (2017).

    Article  Google Scholar 

  14. Kim, Y., Kimball, J. S., Zhang, K. & McDonald, K. C. Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: implications for regional vegetation growth. Remote Sens. Environ. 121, 472–487 (2012).

    Article  Google Scholar 

  15. Zhang, K., Kimball, J. S., Kim, Y. & Mcdonald, K. C. Changing freeze-thaw seasons in northern high latitudes and associated influences on evapotranspiration. Hydrol. Process. 25, 4142–4151 (2011).

    Article  Google Scholar 

  16. Blume-Werry, G., Kreyling, J., Laudon, H. & Milbau, A. Short-term climate change manipulation effects do not scale up to long-term legacies: effects of an absent snow cover on boreal forest plants. J. Ecol. 104, 1638–1648 (2016).

    Article  Google Scholar 

  17. Carlson, B. Z., Choler, P., Renaud, J., Dedieu, J. P. & Thuiller, W. Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities. Ann. Bot. 116, 1023–1034 (2015).

    Article  Google Scholar 

  18. Bale, J. S. & Hayward, S. A. L. Insect overwintering in a changing climate. J. Exp. Biol. 213, 980–994 (2010).

    Article  CAS  Google Scholar 

  19. Roland, J. & Matter, S. F. Pivotal effect of early-winter temperatures and snowfall on population growth of alpine Parnassius smintheus butterflies. Ecol. Monogr. 86, 412–428 (2016).

    Article  Google Scholar 

  20. Kausrud, K. L. et al. Linking climate change to lemming cycles. Nature 456, 93–97 (2008).

    Article  CAS  Google Scholar 

  21. Pedersen, S., Odden, M. & Pedersen, H. C. Climate change induced molting mismatch? Mountain hare abundance reduced by duration of snow cover and predator abundance. Ecosphere 8, 1–8 (2017).

    Article  CAS  Google Scholar 

  22. Sultaire, S. M. et al. Climate change surpasses land-use change in the contracting range boundary of a winter-adapted mammal. Proc. R. Soc. B 283, 20153104 (2016).

    Article  CAS  Google Scholar 

  23. Brown, R. D. & Mote, P. W. The response of Northern Hemisphere snow cover to a changing climate. J. Clim. 22, 2124–2145 (2009).

    Article  Google Scholar 

  24. Zhu, L., Radeloff, V. C. & Ives, A. R. Characterizing global patterns of frozen ground with and without snow cover using microwave and MODIS satellite data products. Remote Sens. Environ. 191, 168–178 (2017).

    Article  Google Scholar 

  25. Hall, D. K., Riggs, G. A., Salomonson, V. V., Digirolamo, N. E. & Bayr, K. J. MODIS snow-cover products. Remote Sens. Environ. 83, 181–194 (2002).

    Article  Google Scholar 

  26. Kim, Y., Kimball, J. S., McDonald, K. C. & Glassy, J. Developing a global data record of daily landscape freeze/thaw status using satellite passive microwave remote sensing. IEEE Trans. Geosci. Remote Sens. 49, 949–960 (2011).

    Article  Google Scholar 

  27. Thompson, K. L., Zuckerberg, B., Porter, W. P. & Pauli, J. N. The phenology of the subnivium. Environ. Res. Lett. 13, 064037 (2018).

    Article  Google Scholar 

  28. Ge, Y. & Gong, G. Land surface insulation response to snow depth variability. J. Geophys. Res. 115, D08107 (2010).

    Article  Google Scholar 

  29. Sturm, M., Holmgren, J., König, M. & Morris, K. The thermal conductivity of seasonal snow. J. Glaciol. 43, 26–41 (2017).

    Article  Google Scholar 

  30. Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  31. Maurer, E. P., Brekke, L., Pruitt, T. & Duffy, P. B. Fine-resolution climate projections enhance regional climate change impact studies. Eos Trans. Am. Geophys. Union 88, 504–504 (2007).

    Article  Google Scholar 

  32. Seager, R. & Vecchi, G. A. Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc. Natl Acad. Sci. USA 107, 21277–21282 (2010).

    Article  CAS  Google Scholar 

  33. McCabe, G. J. & Wolock, D. M. Long-term variability in Northern Hemisphere snow cover and associations with warmer winters. Climatic Change 99, 141–153 (2010).

    Article  Google Scholar 

  34. Korslund, L. & Steen, H. Small rodent winter survival: snow conditions limit access to food resources. J. Anim. Ecol. 75, 156–166 (2006).

    Article  Google Scholar 

  35. Connolly, B. M. & Orrock, J. L. Climatic variation and seed persistence: freeze–thaw cycles lower survival via the joint action of abiotic stress and fungal pathogens. Oecologia 179, 609–616 (2015).

    Article  Google Scholar 

  36. Kreyling, J. Winter climate change: a critical factor for temperate vegetation performance. Ecology 91, 1939–1948 (2010).

    Article  Google Scholar 

  37. Fountain, A. G. et al. The disappearing cryosphere: impacts and ecosystem responses to rapid cryosphere loss. Bioscience 62, 405–415 (2012).

    Article  Google Scholar 

  38. Hawkins, B. A., Rueda, M., Rangel, T. F. & Field, R. Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests. J. Biogeogr. 41, 23–38 (2014).

    Article  Google Scholar 

  39. Zuckerberg, B. & Pauli, J. N. Conserving and managing the subnivium. Conserv. Biol. 32, 774–781 (2018).

    Article  Google Scholar 

  40. Kim, Y., Kimball, J. S., Glassy, J. & Du, J. An extended global Earth system data record on daily landscape freeze–thaw status determined from satellite passive microwave remote sensing. Earth Syst. Sci. Data 9, 133–147 (2017).

    Article  Google Scholar 

  41. Kim, Y., Kimball, J. S., Robinson, D. A. & Derksen, C. New satellite climate data records indicate strong coupling between recent frozen season changes and snow cover over high northern latitudes. Environ. Res. Lett. 10, 084004 (2015).

    Article  CAS  Google Scholar 

  42. Frei, A. et al. A review of global satellite-derived snow products. Adv. Space Res. 50, 1007–1029 (2012).

    Article  Google Scholar 

  43. Gao, Y., Xie, H., Yao, T. & Xue, C. Integrated assessment on multi-temporal and multi-sensor combinations for reducing cloud obscuration of MODIS snow cover products of the Pacific Northwest USA. Remote Sens. Environ. 114, 1662–1675 (2010).

    Article  Google Scholar 

Download references


Support for this work was provided by NSF/NASA’s Dimensions of Biodiversity programme (1240804), NASA’s Biodiversity and Ecological Forecasting programme (grant no. NNX14AP07G), Shandong Provincial Natural Science Foundation, China (grant no. ZR2019BD040), the open fund of the Ministry of Education Laboratory for Earth Surface Processes, Peking University, and the National Natural Science Foundation of China (grant no. 41701220). C.Z. is supported by the Taishan Scholars Program of Shandong, China (grant no. ts201712071). We thank the US Department of the Interior’s Bureau of Reclamation for providing the ‘Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections’ archive.

Author information

Authors and Affiliations



L.Z., A.R.I. and V.C.R. designed the study. L.Z., A.R.I., C.Z., Y.G. and V.C.R. analysed data. L.Z., A.R.I., C.Z., Y.G. and V.C.R. wrote the paper.

Corresponding authors

Correspondence to Likai Zhu or Yuanyuan Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Tables 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Ives, A.R., Zhang, C. et al. Climate change causes functionally colder winters for snow cover-dependent organisms. Nat. Clim. Chang. 9, 886–893 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing